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Preface

The venue for the 3rd Lehmann Symposium was the School of Engineering at

Rice University from May 16th through May 19th, 2007. The collection of refereed

papers included in this volume represents a selection of the papers submitted for

publication. Most of the work was presented at the Symposium but there are some

contributions that were submitted by participants who did not present their work

during the conference.

All activities of the Symposium, except for a banquet held at the student center,

were held in Duncan Hall – home of the Statistics Department. Duncan Hall’s floor

plan, with its open atrium, its main auditorium, and several conveniently located

meeting rooms, allows for, and facilitates, interaction among the participants.

As it has been the tradition of the Symposia, the event opens with a session for

young investigators. The purpose of initiating the Symposia in this way is to free

the young investigators from this activity, and introduce them to other more senior

investigators with the goal that the young investigators may more easily mingle with

the group. For the third Lehmann Symposium the four young investigators were

Yolanda Muñoz Maldonado, Brisa Sánchez, Farinaz Koushanfar, and José Enrique

Figueroa-López. At the end, due to unforeseen circumstances, José Enrique was

moved to the probability session. All four young investigators provided motivating

talks and three of them submitted their work for this volume. All four have a bright

future ahead of them.

It is also the tradition of the Symposia that the young investigators session is

immediately followed by the first Plenary session and this spot has always been filled

by Erich L. Lehmann. Erich provided a great lecture on the history of optimality.

The rest of the program, I hope that the reader will agree with me, was excellent.

The papers presented here cover several areas: some of the works consider clas-

sical aspects of the discipline and others deal with contemporary aspects of the

theory and applications of statistics. Thus, the reader will find a fascinating section

dedicated to the subject of optimality. Lehmann, Bahadur and Bickel, and Huber

imsart-coll ver. 2008/08/29 file: Rojo_Preface3.tex date: March 26, 2009
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provide excellent discussions on various aspects of optimality. Semi-parametric and

non-parametric inference, bootstrap tests of hypotheses, functional data analysis,

asymptotic theory, ad-hoc networks, and finance are some of the areas represented

in the volume. Intentionally, I left probability to the end. It has been a goal of the

Symposium to have a probability component. It is felt that the perceived distancing

of probability and statistics, even at the level of Ph.D. programs, cannot be healthy.

Future Lehmann Symposia will continue to encourage a closer relationship between

the two subjects.

The Symposium could not occur without the financial support of several generous

contributors. Several institutions have provided support for the series of Symposia.

I want, however, to acknowledge the explicit support and work of the individuals

within those institutions responsible for securing the funding. Demissie Alemayehu

of Pfizer has been a constant and faithful supporter of the Symposia and has been

responsible for Pfizer’s generous contributions to the 2nd and 3rd Lehmann Sym-

posia. I also want to acknowledge the support of the National Science Foundation.

Shulamith Gross, Grace Yang, and Gábor Székely have been instrumental in sup-

porting the 2nd and 3rd Lehmann Symposia. Gary Rosner, from the U.T. MD

Anderson Cancer Center, has worked to obtain MD Anderson Cancer support for

the last two Symposia. Kathleen O’Hara at the Mathematical Sciences Research

Institute (MSRI) and James O. Berger at the Statistics and Applied Mathemat-

ics Sciences Institute (SAMSI) provided financial support for the 3rd Symposium.

MSRI supported a proposal to hold the event at their facilities but plans changed.

You can read the details in the first article of the volume. The efforts of Robert

Hardy of the University of Texas School of Public Health, and Rudy Guerra of the

Gulf Coast Consortia, are also gratefully acknowledged. Victor Pérez-Abreu, of the

Centro de Investigación en Matemáticas (CIMAT) provided support for the 1st and

2nd Symposia.

I also want to give special recognition to my student Tuan S. Nguyen for his

indefatigable efforts and continued help in the preparation of this volume.

Last, but not least, I want to acknowledge the support of Rice University through
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vii

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

the School of Engineering and its Department of Statistics for allowing me to engage

in these activities.

Javier Rojo January 30, 2009
Statistics Department
Rice University
Houston, Texas
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Erich L. Lehmann, The Lehmann

Symposia, and November 20th 1917

Javier Rojo??

Rice University

The Lehmann Symposia originated as a result of a conversation I had in the
year 2001 with the, then, Director of the Centro de Investigación en Matemáticas
(CIMAT), Victor Pérez-Abreu. We both felt that there was an urgent need to
bring back into focus theoretical statistics and our proposed solution was a series
of Symposia that could serve as a forum for some of the exciting theoretical work
being done in statistics. The First Lehmann Symposium took place at CIMAT in
May of 2002. Most of the participants were Mexican colleagues. The program can
be seen at the site http://www.stat.rice.edu/lehmann/1st-Lehmann.html. The
second Lehmann Symposium – http://www.stat.rice.edu/lehmann/ – was held
in May of 2004 at the School of Engineering at Rice University. Initially, the venues
for the Symposia would alternate between CIMAT and Rice University. However,
for various reasons, some being financial, it was decided to hold the 3rd Lehmann
Symposium in the United States.

The original plans for the Third Lehmann Symposium were to hold the sym-
posium at the Mathematical Sciences Research Institute (MSRI) in Berkeley dur-
ing the month of November of 2007. The Third Symposium, however, ended up
being held at Rice University for a second time during May of 2007. See http:
//www.stat.rice.edu/~jrojo/3rd-Lehmann/. I co-edited webcasts of the Second
and Third Symposia, and these webcasts are freely available to the public. They
can be found at the following sites:
http://webcast.rice.edu/webcast.php?action=details&event=408 — second
symposium, and
http://webcast.rice.edu/webcast.php?action=details&event=1057 — third
symposium.

But why was the venue for the Third Symposium changed from California back to
Texas, and why was the date changed from November 20th, 2007 to May 16th, 2007?
There were very good reasons for holding the opening of the Symposium on Novem-
ber 20th, 2007. For example, November 20th, 2007 was the silver anniversary of the
greatest big game of all time. See, for example: http://www.alumni.berkeley.
edu/KCAA_Multimedia/The_Play_1982.asp. Another good reason to start the Sym-
posium on November 20th was to co-celebrate, with our Mexican counterparts, the
start of the first major 20th century revolution. The Mexican revolution started on
November 20th, 1910 to remove the dictator Porfirio Dı́az who had remained in
power for 30 years. This revolution led to the Constitution of 1917 and the start of
the Partido Revolucionario Institucional that held power until 2000 when a candi-
date from the Partido Acción Nacional, Vicente Fox, won the Presidential election.
Francisco I. Madero, with the help of Francisco Villa, took over from Porfirio Dı́az.

??Department of Statistics, MS-138; Rice University; 6100 Main Street; Houston, TX 77005;
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on November 20th, 1910 to remove the dictator Porfirio Diaz from power. This revolution led to 

the Constitution of 1917 and the start of the Partido Revolucionario Institucional that held power 

until the general election of 2000. Francisco I. Madero, supported by, among others, Francisco 

Villa, took over from Porfirio Diaz. 

 

 
 

           Francisco Villa          Porfirio Diaz        Francisco I. Madero 

 

The Consitution of 1917, signed in February 5th of that year, is the current Mexican 

Constitution. The year of 1917, as it turned out, was a very significant year in the history of the 

world. 

Some of the significant events of 1917  

January 28 -  The United States ends search for Pancho Villa. 

February 5 -  Mexican Constitution is adopted. 

February 24 - World War I: United States ambassador to the United Kingdom Walter H. Page is 

given the Zimmermann Telegram, in which Germany offers to give the American 

Southwest back to Mexico, if Mexico will declare war on the United States. 

March 31 -  The United States takes possession of the Virgin Islands after paying $25 million 

to Denmark. 

April 6.-  The United States declares war on Germany. 

April 16 -  Lenin arrives in Petrograd. 

The left and right images are taken from the Wikimedia Commons, and are available
from the United States Library of Congress’s Prints and Photographs Division under
digital records ID npcc-19554 and ggbain-01887, respectively. The middle image is in
the public domain and it was taken from Project Gutenberg, and is available from
Enock (1912).

The Constitution of 1917, signed in February 5th of that year, is the current Mexican
Constitution. The year of 1917, as it turned out, was a very significant year in the
history of the world.

Some of the Significant Events of 1917

February 5 - The Mexican Constitution is adopted by the Mexican Congress in
the City of Queretaro, and this Constitution continues to be the Mexican Magna
Carta.
February 7 - The United States ends the search for Pancho Villa. The Mexican
expedition, as it is known, was led by General Pershing and had the objective of
capturing Francisco (Pancho) Villa who had crossed over and ransacked Columbus,
New Mexico. Pershing was unable to capture Villa, and after several encounters
with various groups, including the Mexican army, Pershing and his forces returned
to the United States in February 1917.
February 24 - President Woodrow Wilson is presented with a deciphered German
telegram – the Zimmermann telegram, in which Germany offers to give American
territory back to Mexico, if Mexico will declare war on the United States.

March 31 - The United States takes possession of the Virgin Islands after paying
$25 million to Denmark.

April 6 - As a result of the deciphering of the Zimmermann telegram, the United
States Congress declares war on Germany.

April 11 - Babe Ruth pitches for the Boston Red Sox and beats the New York
Yankees 10-3, allowing 3 hits. On January 5th, 1920, Ruth was traded to the New
York Yankees and thus started the Bambino Curse for the Red Sox. The curse was
finally broken 84 years later when the Sox defeated the Cardinals in the 2004 World
Series.

April 16 - Lenin arrives in Petrograd.

email: jrojo@rice.edu
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May 17 - The paper “On the distribution of the correlation coefficient in small sam-
ple. Appendix I to the papers of “Student” and R. A. Fisher. A cooperative study”,
by H.E. Soper, A.W. Young, B.M. Cave, A. Lee and K. Pearson, (Biometrika 1917
11: 328-413; doi:10.1093/biomet/11.4.328), and the paper “I. Tables for estimating
the Probability that the Mean of a unique Sample of Observations lies between -∞
and any given Distance of the Mean of the Population from which the Sample is
drawn” by “Student” (Biometrika 1917 11: 414-417; doi:10.1093/biomet/11.4.414)
are published. The former would include a criticism of Fisher’s maximum likelihood
principle that helped ignite a feud between Fisher and Pearson.
May 18 - The Selective Service Act passes the U.S. Congress giving the President
the power of conscription.
July 4 - Petrograd Street demonstration - The Bolshevik revolution looms in the
horizon.

Days of revolution - barricades at the Arcenal [i.e., Arsenal], Petrograd. The photo is
taken from the Library of Congress under lot 2398, reproduction number LC-USZ62-
25298, 1917.

November 7 - Bolshevik Revolution begins: The workers of St. Petersburg in
Russia, led by the Bolsheviks and the Bolshevik leader Vladimir Lenin, attacked
the ineffective Kerensky Provisional Government.
November 20 - Ukraine is declared a republic.

November 20, 1917 and Beyond

Amidst the shadows of war and civil unrest, a small burst of light began to shine
in Strasbourg, France. Erich Leo Lehmann was born November 20th, 1917 – a mere
7 months after The United States entered the First World War.

Some years later, at the age of 16, he and his family went to live in Switzerland
to avoid the Nazis. After five years in Switzerland, and two years in Cambridge,
Erich L. Lehmann arrived in the United States in 1940 with a letter of introduction
from the wife of Edmund Landau. Landau had passed away a couple of years earlier
from a heart attack. The letter of introduction was for Richard Courant who was
in New York and had been a colleague of Landau in Göttingen. After being asked
by Courant if he wanted to stay in New York or live in the United States, Lehmann
responded that he wanted to live in the United States and then followed Courant’s
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Erich Leo Lehmann in 1919

advice to go to an “up-and-coming university” in Berkeley, California. Upon his
arrival in Berkeley in 1941, Erich Lehmann met with Griffith C. Evans who had
been a mathematician at the Rice Institute, now Rice University. Evans had been
brought to Berkeley to develop the mathematics department that was in disarray.
Evans was an excellent mathematician and many of his contributions as a math-
ematician and administrator have been recorded in Morrey (1983) and Lehmann
(2007). As an administrator, Evans was able to attract to Berkeley some of the best
mathematicians of the time. With a broad vision for the mathematics department,
Evans supported a three-week visit by R. A. Fisher to Berkeley. The visit did not go
well. Reid (1992) writes in her book that, despite a generous endowed lectureship
whose terms required the lecturer to spend their time on campus to interact with
interested faculty, Fisher spent the first five days of his visit in San Francisco and
went back to England a day earlier “standing up a dinner in his honor”. Reid (1992)
writes that according to Raymond T. Birge, chair of the Physics department at the
time, “Fisher was the most conceited man he had ever met - ‘and that is saying
a lot with such competitors as Millikan et al!’ ” Birge put forth Neyman’s name
to Evans. Evans had never heard of Neyman but after some inquiring an offer was
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Erich Leo Lehmann in 1924

made. Neyman accepted and a few years later, after an offer from Columbia became
available, was able to negotiate with Evans for the creation of a separate statistics
department. These and other fascinating details may be found in Lehmann (1993,
1996, and 2007) and Reid (1992) and other references in the bibliography.

During their first meeting, Evans offered him a probationary graduate student
status and six months later a teaching assistantship in the Mathematics Depart-
ment. With the advent of the Second World War, Evans suggested to change areas
of study and consider a more useful subject. Either Physics or Statistics would
be more useful than Mathematics. After completing the required course work, and
after returning from Guam where he and Joseph Hodges had served, it was time
for Erich L. Lehmann to begin work on a dissertation. A topic with a probabilistic
flavor was proposed by Pao-Lu Hsu after consulting with Neyman. Progress was
swift and as Lehmann prepared to write up some of the results, a reference led to
other references that led to the painful discovery that the results so far obtained
had been published a few decades earlier. At that time Neyman was invited as a
member of a delegation to observe the Greek elections. Concerned with the dis-
appointment of his student, and knowing that he might return until a few months
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later, Neyman asked Hsu to consider providing a new problem for Lehmann’s thesis.
Hsu suggested a new problem that he had thought about and planned to work on,
and a problem for which he already had some preliminary results. Lehmann came
to know about Hsu’s generosity some time later and had hoped to thank Hsu per-
sonally after Hsu’s return to Berkeley from Columbia, but this would never happen
as Hsu opted to return to China. With Neyman in Greece and Hsu back in China,
Neyman suggested George Polya as a surrogate advisor. Frequent visits to Polya
at Stanford finally yielded a thesis. A new problem presented itself in that Polya
was not a faculty member at Berkeley. Fortunately, Neyman was able to return in
time for the thesis defense. He had been asked to return to the United States as
his services were no longer needed in Greece. In effect, he had been dismissed for
insubordination. He had decided to investigate on his own the possibility that the
elections had been rigged. It thus happened that in 1946 Erich L. Lehmann received
the degree of Doctor of Philosophy. The title of his thesis: “Optimum Tests of a
Certain Class of Hypotheses Specifying the Value of a Correlation Coefficient”.

Erich L. Lehmann stayed in Berkeley as a young faculty member and the “Rest
of the story” is well known. Besides his many influential publications, he was able
to produce 41-plus Ph.D. students. The following table provides the names of the
students and the year of graduation.

Colin Ross Blyth 1950 Gouri Kanta Bhattacharyya 1966
Fred Charles Andrews 1953 James Nwoye Adichie 1966
Allan Birnbaum 1954 Dattaprabhakar V. Gokhale 1966
Hendrik Salomom Konijn 1954 Frank Rudolph Hampel 1968
Balkrishna V. Sukhatme 1955 Wilhelmine von Turk Stefansky 1969
V. J. Chacko 1959 Louis Jaeckel 1969
Piotr Witold Mikulski 1961 Friedrich Wilhelm Scholz 1971
Madan Lal Puri 1962 Dan Anbar 1971
Krishen Lal Mehra 1962 Michael Denis Stuart 1972
Subha Bhuchongkul Sutchritpongsa 1962 Claude L. Guillier 1972
Shishirkumar Jogdeo 1962 Sherali Mavjibhai Makani 1972
Peter J. Bickel 1963 Howard J. M. D’Abrera 1973
Arnljot Høyland 1963 Hyun-Ju Yoo Jin 1974
R. Murty Ponnapalli 1964 Amy Poon Davis 1977
Milan Kumar Gupta 1964 Jan F. Bjørnstad 1978
Madabhushi Raghavachari 1964 William Paul Carmichael 1981
Vida Greenberg 1964 David Draper 1981
Kjell Andreas Doksum 1965 Wei-Yin Loh 1982
William Harvey Lawton 1965 Marc J. Sobel 1983
Shulamith Gross 1966 Javier Rojo 1984
Bruce Hoadley 1966

So why, then, was the date changed from November 20th to May 16th? After all,
it would have been a great way of celebrating Erich’s wonderful 90 years of life.
But that is precisely the issue. To the reader who does not know Erich L. Lehmann
personally, holding a conference on his birthday, a conference that is named after
him, would seem only natural. However, those close to him know very well that he is
very modest and an event like the Symposium held on his birthday, would be rather
uncomfortable for him. He thought that the meeting would turn into a birthday
celebration and he would not have it that way. The Lehmann Symposia should be
true to its beginnings: A meeting to showcase good theoretical work. Thus, it came
to be that the venue and the date for the 3rd Lehmann Symposium were changed.
As it was not possible to celebrate his 90th birthday with the symposium, this
volume is dedicated to Erich’s 90th birthday. I am sure that, given the opportunity,
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all his Ph.D. students listed above and colleagues around the world would join me
in wishing Erich Leo Lehmann many more wonderful years! Our lives have been
greatly enriched through our interactions, professional and social, with him.
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The Honorable Erich L. Lehmann

Stephen Stigler

University of Chicago

The year 2007 marks a concurrence of important statistical anniversaries. It is
the 350th anniversary of the publication of the first printed work on mathematical
probability, the short tract that Christian Huygens wrote following a visit to Paris,
where he learned of the investigations of Fermat and Pascal. Also, 2007 is the 150th

year since the birth of Karl Pearson, father of the Chi-square test and much else.
And related to both those events, it is also the year our teacher, friend, and colleague
Erich Lehmann celebrates his 90th birthday. Christian Huygen’s tract served as the
textbook on probability for over a half century, helping to form that subject. Karl
Pearson inaugurated an important species of hypothesis testing. Both then have
important similarities to Erich Lehmann. But rather than further explore those
analogies immediately, I would like to characterize an important part of Erich’s
ongoing research by looking back to a more modern document.

The University of Chicago, rare among research universities, gives honorary de-
grees only in recognition of scholarly contributions of the highest order. We do not
use those degrees to honor movie stars, philanthropists, or even heads of state (at
least not over the past 80 years). There is a partial exception: we do so honor the
departing Chair of our Board of Trustees. But that is the limit of the exceptions.
We do not use this device to honor work done at Chicago; our major financial sup-
porters are recognized in other ways; and discreet inquiries on behalf of politicians,
celebrities, popular artists, and several heads of state have been politely turned
aside, however meritorious they may have been on other grounds. Scholarship is
the only coin of our realm.

One of the fields where this practice has been actively pursued is statistics. The
first degree our newly formed department granted was an honorary Doctorate of
Science to Ronald Fisher, June 13, 1952. This was followed over the next 31 years
by degrees to Harold Hotelling (1955), Jerzy Neyman (1959), Maurice Bartlett
(1966), John Tukey (1969), and Fred Mosteller (1973). In 1990, in anticipation of our
University’s centennial celebration beginning the following year, the Department
undertook to resume this practice after several years by proposing an honorary
degree for Erich Lehmann.

The procedure for granting honorary degrees at Chicago is a bit involved. After
getting departmental agreement (an easy matter in this case) it is necessary to
prepare a detailed case to be submitted to a cross-university committee appointed
for this task. Exacting standards are upheld and only a fraction of proposals are
given the nod of approval. Local legend has it that when someone proposed the
Queen of England for a degree, it was turned back with a request for her list of
publications. The procedure is like that for hiring a senior scholar from outside the
university: several letters of recommendation must be solicited, the evidence must
be assembled and carefully presented, all with an uncertain outcome. And unlike
senior hires, even if the proposal is successful and the offer accepted, you do not
get to keep the candidate!

8

imsart-coll ver. 2008/08/29 file: Stigler.tex date: March 25, 2009



The Honorable Erich L. Lehmann 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

In preparing Erich’s case we solicited letters from a dozen of the top international
statistical scholars over the past half-century. All of these were glowing testaments
to an amazingly influential body of work, as well as to Erich’s collegial role in help-
ing to build modern mathematical statistics. To buttress the case we did a careful
citation study to document quantitatively the pervasive influence of Erich’s articles
and books. To our eye there was no doubt, but all this needed to be presented to a
demanding committee of some of the universitys best professors, regrettably none
with more than a superficial knowledge of our subject. It is that memo which I will
now present.

∗ ∗ ∗

23 April 1990

Memo to Committee on Honorary Degrees

On behalf of the Department of Statistics, and with their unanimous endorse-
ment, I wish to nominate Erich L. Lehmann for an Honorary Degree. We believe he
would be an exceptionally appropriate candidate for a Centennial Honorary Degree
at the convocation of October 1991; alternatively he could be considered for an
earlier convocation, such as June 1991. Prior to his retirement in 1988, Lehmann
was Professor of Statistics at the University of California at Berkeley, where he
remains extremely active.

Great scientists can be roughly classified as one of two types: those whose pri-
mary achievement was a single brilliant discovery, and those who have over the
course of a life’s work constructed a discipline, a school. Lehmann has made many
important discoveries, but he is more of the second type than the first. In the years
after the Second World War, the dominant paradigm in American mathematical
statistics was the decision theoretic school of Jerzy Neyman (Sc.D., Chicago, 1959)
and Abraham Wald. Wald died tragically in 1950 and Neyman’s attention was ab-
sorbed by other matters after the mid-1950’s. While many hands played a role in
the prospering of this approach over 1950-1980, it is arguable that the chief archi-
tect of the expansion of the paradigm, and the one most responsible for its immense
international influence over that period, was Erich Lehmann.

There is an interesting historical parallel to Lehmann’s role in this school of
thought. In the 1650’s Pascal and Fermat founded probability theory. Yet they
taught few and published little. It was Christian Huygens’s 1657 tract that was re-
sponsible for the form in which these ideas were disseminated for half a century, and
their widespread application in mathematics, philosophy, and science. Similarly, it
was Lehmann’s mimeographed lecture notes of estimation (1950, widely circulated
and reproduced, but only published as a book in 1983) and Lehmann’s book of
hypothesis testing (1959) that provided the form in which the Neyman-Wald ap-
proach came to dominate a major portion of the mathematical world. Not all of
the results are Lehmann’s (though many are), but the arrangement, the elegant
seamless presentation, the coherency of the whole, are his in a way that has not
been true in many sciences. To a large degree, Erich Lehmann created the curricu-
lum of the world’s graduate programs in mathematical statistics over the period
1960-1980. Lehmann has personally supervised over 50 Ph.D. dissertations, and he
counts among his students some of the most influential statisticians in the United
States, Europe, and Asia.

The focus of the school that is so associated with Lehmann is the application
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of decision theory to statistical problems, the construction of a calculus of optimal
statistical procedures. In one simple setting, parametric estimation, an objective
criterion (“a loss function”) is defined and an attempt is made within a framework
of stochastic models to seek the best procedure, or at any rate to determine an
order for the available procedures. The pitfalls of this approach are many: In all
but the simplest problems, the mathematical difficulties can be immense, and the
specification of models and objective criteria that capture the essence of the scien-
tific problem is rarely straightforward. The success of Lehmann and his school has
been due to the balance they have maintained in creating a system of mathematical
structures of sufficient richness to encompass a large range of practical problems,
yet not so amorphously vague that a true discipline could not be constructed around
them. Mathematics flourishes in the detailed exploration of constrained spaces with
widely accepted rules; statistics flourishes with the flexibility to treat the infinite
variety of problems in the real world. Lehmann’s genius has been his ability to
reconcile these divergent goals and build a school that has enriched both sides.

∗ ∗ ∗

To this was appended the letters and the citation study.

The proposal was successful; we were delighted when Erich accepted and both
he and Julie attended the special Convocation on October 3, 1991, celebrating the
University’s Centennial. Their visit was the occasion for several parties, dinners,
toasts, and culminated in a grand ceremony in Rockefeller Chapel [yes, we do
recognize donors in other ways], attended by dignitaries representing the great
universities of the world. The citation on Erich’s degree read:

Your research on the application of decision theory to statistical problems has helped
create and organize modern mathematical statistics; your elegant treatises have
guided the curricula of a majority of the nation’s graduate programs and given shape
to the discipline, and your teaching has inspired a generation of scholars.

Erich has received many other honors, of course, including an earlier honorary
degree at the University of Leiden. And we have since 1991 given more honorary
degrees; to Charles Stein (1992), Ulf Grenander (1994), Bradley Efron (1995), David
Aldous (2000), Persi Diaconis (2003), and Grace Wahba (2007). The occasion of
Erich’s University of Chicago degree retains a special place in our memories. So
too, to those of us who took his classes (in my case some 40 years ago) does the
memory of his careful and supremely clear lectures, and his papers and books that
helped shape the modern statistical world. For all that and more, we may toast this
extraordinary scholar on the 90th anniversary of his birth!
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Some History of Optimality

Erich L. Lehmann

University of California, Berkeley
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1. Combination of Observations

The earliest optimality considerations appear to be those of Laplace and Gauss
at the beginning of the 19th Century concerned with determining the best linear
estimates of parameters in linear structures. Laplace calls these optimal estimates
“the most advantageous” while Gauss refers to them as “the most plausible values.”
Various aspects of this problem were discussed throughout the 19th Century under
the heading “Combination of Observations.” The version of the principal result gen-
erally accepted today is the so-called Gauss-Markov theorem. It states (in modern
language) that the least squares estimates are the linear unbiased estimates with
minimum variance. While restricted to linear estimates, the result is nonparametric
in that it makes no assumptions about the distribution of the errors. For an account
of this work see, for example, Stigler (1986), Hald (1998), or Chatterjee (2003).

2. Maximum Likelihood Estimation

Optimality next played an important part in Fisher’s fundamental paper of 1922.
In this paper (followed by a clarifying paper in 1925), Fisher considers estimation
in parametric models, proposes the maximum likelihood estimator (MLE) as a gen-
erally applicable solution, and claims (but does not prove) that such estimators are
consistent and asymptotically efficient efficient (i.e., that they minimize the asymp-
totic variance). Note that unlike the Gauss-Markov theorem, maximum likelihood
estimation does assume that the distribution of the variables belongs to a given
parametric family.

11
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Maximum likelihood has become the most widely used method of estimation,
and there has been an enormous amount of work connected with Fisher’s claims
concerning it. It has led to the discovery of superefficiency on the one hand and of
second order efficiency on the other. Many counterexamples have been found (even
to consistency), and a number of modifications (bias correction and replacement
of the MLE by a consistent root of the likelihood equation, for example) have
been proposed. The situation is complex, but under suitable restrictions Fisher’s
conjecture is essentially correct when the likelihood equation has a unique root. For
a more precise statement, see Shao (1999), and for further discussion, for example,
Efron (1982), Le Cam (1990), and Barndorff-Nielsen and Cox (1994).

3. The Neyman-Pearson Program

Least squares and maximum likelihood were first proposed on intuitive grounds and
then justified by showing that they possessed certain optimality properties. Opti-
mality as a deliberate program for determining good procedures was introduced in
1933 by Neyman and Pearson in a paper (on testing rather than estimation) appro-
priately called, “On the problem of the most efficient tests of statistical hypotheses.”
As they explain in the introduction:

The main purpose of the present paper is to find a general method of determining
tests which . . . would be most efficient”[in the sense of minimizing the probability of
erroneous conclusions].

In a certain sense this is the true start of optimality theory.

4. The Neyman-Pearson Theory of Hypothesis Testing

Neyman and Pearson (1933) implemented the above program by seeking, for any
given situation, the test which, among all those controlling the probability of false
rejection at a given level α, has the maximum power (and hence the minimum
probability of false acceptance).

For testing a simple hypothesis against a simple alternative, they found the
solution to this problem to be the likelihood ratio test. This result, which is math-
ematically quite elementary but has crucial statistical consequences, is known as
the Neyman-Pearson Lemma.

It turns out that in some (very rare) cases the same test is most powerful against
all alternatives under consideration. Such a uniformly most powerful (UMP) test
is then the optimal solution to the given testing problem. Where a UMP test does
not exist, additional criteria must be invoked.

For example, when nuisance parameters are present, Neyman and Pearson re-
quire that under the hypothesis the rejection probability be α for all values of the
nuisance parameters. They call such rejection regions similar regions. As an im-
portant example, they show that the one-sided t-test is UMP among all similar
regions.

For two-sided alternatives, one would not expect UMP tests to exist even with-
out nuisance parameters. For such cases, Neyman and Pearson then impose the
additional condition of unbiasedness, i.e., that the power of the test is ≥ α for
all alternatives. In follow-ups to their 1933 paper (1936 and 1938), they show, for
example, that the two-sided t-test is UMP among all unbiased tests.
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UMP similar or unbiased tests exist for important classes of testing problems
concerning a single real-valued parameter (in the presence or not of nuisance pa-
rameters) but not for hypotheses such as

H : θ1 = · · · = θs

concerning several parameters.
A different condition, the principle of invariance (suggested by Hunt and Stein,

unpublished), is successful in a number of important such multiparameter situa-
tions. If both the hypothesis and the class of alternatives remain invariant under a
group G of transformations of the sample space, there does in these cases exist a
UMP test among all tests invariant under G.

5. Wald’s Optimality Criteria

A quite-different approach to optimality was initiated by Wald in his 1939 paper,
“Contributions to the theory of statistical estimation and testing hypotheses,” and
was then developed further in a series of publications culminating in his 1950 book,
“Statistical Decision Functions.”

This approach was part of Wald’s formulation of a general theory of decision
procedures. Instead of seeking procedures that are uniformly optimal among some
suitably restricted class of decision procedures, Wald proposes to minimize some
global feature of the performance.

Specialized to hypothesis testing, these proposals reduce to:

i Maximize the average power, averaged with respect to some suitable weight
function over the alternatives. For obvious reasons, Wald called such maxi-
mizing procedures Bayes solutions.

ii Maximize the minimum power over alternatives bounded away from the hy-
pothesis.

6. The Hunt-Stein Theorem

An important connection between the earlier invariance approach and that of Wald
is the Hunt-Stein theorem. It states that if a UMP invariant test exists under a group
G satisfying certain conditions (called amenability), then this test also maximizes
the minimum power over any invariant set of alternatives.1

To illustrate this theorem, consider the univariate linear hypothesis. Under the
combined action of the groups of location, scale and orthogonal transformation, a
UMP invariant test exists. Since these groups satisfy the Hunt-Stein conditions, the
resulting test therefore maximizes the minimum power against all invariant sets of
alternatives.

As a second example, consider the multivariate one-sample problem. Hotelling’s
T 2-test is UMP among all tests that are invariant under the group G of all non-
singular linear transformations. Since G is not amenable, the Hunt-Stein theorem
does not apply. The resulting maximin problem poses considerable difficulties.

1The 1946 paper by Hunt and Stein, “Most stringent tests of statistical hypotheses,” containing
this theorem was never published. The theorem appeared in print for the first time in Lehmann,
“Testing Statistical Hypotheses,” John Wiley, 1959.
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7. Some Extension of the Neyman-Pearson Theory

The Neyman-Pearson theory has been extended in a number of directions. The
following are two extensions of the Neyman-Pearson Lemma, which is so basic to
this theory.

(i) Sequential Analysis

During World War II, Wald proposed sequential procedures, as a way of obtaining
good power with fewer observations. In particular, he suggested the probability ratio
test for testing a simple hypothesis against a simple alternative. This test continues
observation as long as the likelihood ratio remains between two fixed limits and
takes the indicated decision (acceptance or rejection) as soon as it falls outside
these limits.

In 1948, Wald and Wolfowitz proved the remarkable result that for testing a
simple hypothesis against a simple alternative, the sequential probability ratio test,
among all tests with the same (or smaller) probabilities of error, minimizes the
expected number of observations both under the hypothesis and the alternative.

(ii) Robust Inference

All the work reported so far (except for the Gauss-Markov theorem) was carried
out under the assumption of an underlying parametric model. In practice, such an
assumption can be expected to hold at best approximately. As a more realistic for-
mulation, Huber (1964) suggested replacing the assumption of a parametric model
by that of a neighborhood of such a model.

In the following year, he obtained the analog of the Neyman-Pearson Lemma.
For testing the neighborhood of a distribution P0, the test maximizing the mini-
mum power over the neighborhood of an alternative P1 is a censored version of the
likelihood ratio test of P0 against P1.

(iii) Multiple Testing

A very different extension of the Neyman-Pearson theory that is of great practical
importance deals with the situation in which a number of hypotheses (sometimes a
very large number) are being tested rather than just one. Unlike the work discussed
so far, which is classical, the theory of multiple testing is an area of very active
ongoing research.

The first problem here (before optimization) is to find a suitable generalization
of the concept of significance level that would provide satisfactory control of the
probability of false rejections. After this, maximin tests have been obtained, which
require, however, not only unbiasedness and invariance but also a condition of
monotonicity. Surveys of the current state of this work are provided by Shaffer
(2004, 2006).

8. Large Sample Optimality of Testing

A small-sample theory of optimal estimation parallels that of optimal testing
sketched in Sections 4-7, with concepts such as unbiasedness, equivariance (instead
of invariance), and minimax variance (instead of maximin power), and will not be
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discussed here. Asymptotic optimality for estimation goes back to Fisher (1922),
as mentioned in Section 2, and is defined as minimum asymptotic variance.

For testing, asymptotic optimality is considerably more complex, both concep-
tually and technically. It was first studied by Wald in 1941. Consider testing a
simple hypothesis θ = θ0 against a simple alternative θ = θ1. If we keep both θ0

and θ1 fixed, and carry out the tests at a fixed level α, the power of any reasonable
test sequence will tend to 1. Thus any such test sequence will in a trivial sense be
asymptotically UMP.

A more useful approach is obtained by considering a sequence of alternatives

(8.1) θn = θ0 + h/
√
n

For a sequence with fixed h, the power will typically tend to a limit between 0 and
1 as n → ∞. As h varies from 0 to ∞, the limiting power will be an increasing
function of h, going from α to 1; we shall call this the asymptotic power function.
A sequence of tests can then be defined as being asymptotically most powerful
(AUMP) if it maximizes the asymptotic power for all h.

Unlike the finite sample situation where UMP tests exist only rarely and then
are unique, it turns out that AUMP tests exist under very weak assumptions, and
that in fact many different AUMP tests exist for the same situation, among them
the likelihood ratio test, the Wald test, and the locally most powerful (Rao) test. To
distinguish them, one must resort to higher order asymptotics. (See, for example,
Barndorff-Nielsen and Cox (1994)). An exposition of the first order theory due to
Le Cam can be found in Lehmann and Romano (2005).

9. Optimal Design

In generalization of minimizing the variance of an estimator, optimal design the-
ory is concerned with determining the design that minimizes some function of the
covariance matrix of the best linear estimators of the parameters in question. In
particular, D-optimality minimizes the determinant, E-optimality is a minimax cri-
terion, and so on. After some isolated earlier efforts, the problem of optimal design
was studied systematically by Kiefer in more than 40 papers between 1958 and his
early death in 1981. They make up vol. III of his collected papers.

10. A Culture Clash

Not everyone was enthusiastic about optimality as a guiding principle. Criticism
was highlighted at a 1958 meeting of the Royal Statistical Society at which Kiefer
presented a survey talk on “Optimum Experimental Designs.” It was a discussion
paper, and the reaction was nearly uniformly negative. The core of the disagreement
is stated clearly when Barnard quotes Kiefer as saying of procedures proposed in a
paper by Box and Wilson (1951) that they “often [are] not even well-defined rules
of operation.” Barnard’s reply:

In the field of practical human activity, rules of operation which are not well defined
may be preferable to rules which are.

The conflict is discussed by Henry Wynn in his introduction to a reprint of
Kiefers paper in “Breakthroughs in Statistics,” vol. I (Kotz and Johnson, Eds.).
Wynn calls it “a clash of statistical cultures.”
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This clash is between the Wald school of abstraction and optimality on the one
hand and what Tocher, in his discussion of Kiefer’s paper, calls “the school of
British experimental design – a very practical people,” on the other.

11. Tukey’s Criticism

Criticism of optimality was not confined to England. An outspoken American critic
questioning the value and importance of optimization was John Tukey. His attitude
is indicated by the titles of two philosophical papers in 1961 and 1962, which are
titled respectively, “The tyranny of the best” and “Dangers of optimization.”

Tukey’s concern with optimality had its origin in the fact that at the time opti-
mization had become the dominant interest of mathematical statistics. In the 1962
paper, he writes:

Some [statisticians] seem to equate [optimization] to statistics an attitude which, if
widely adopted, is guaranteed to produce a dried-up, encysted field with little chance
of real growth.

12. Conclusion

That optimality considerations had become so dominant is explained by the histor-
ical situation. Periods of great innovation are followed by periods of consolidation,
in which the new work is given a final (or, as Tukey says, encysted) form. Such a
dichotomy is also discussed by Huber (1975). Thus, the revolutionary work of Stu-
dent and Fisher was followed by the optimization approach of Neyman, Pearson,
Wald and their students described in this paper.

Today we are faced with the opposite situation. We are confronted with new
problems arising from immense data sets and involving problems of great com-
plexity. Ad hoc solutions are proposed and tried out on a few examples. This is a
natural first step, but eventually we will want to justify the solutions at which we
have arrived intuitively and by trial and error. A theoretical underpinning will be
provided and the conditions will be found under which these solutions are the best
possible.
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Preface:

This paper dates back to the late 60’s when I collaborated with Raj Bahadur,
who is unfortunately no longer with us. The reason it has not appeared until now
is that he felt it had to be accompanied by a number of multivariate examples. We
both went on to other things; the examples were not worked out although we both
knew of the existence of some of them. So why is this paper appearing here (with the
approval of Steve Stigler, an executor of the Bahadur estate)? First, in addition to
attesting to Erich’s continued vital presence, it gives me the opportunity of paying
a tribute to Bahadur, who was a friend of both of ours. Second, it is an interesting
reminder of how writing styles have changed on the whole I think for the better
– from rigorous abstract formulation and mathematically rigorous presentation to
more motivation and a lot of hand waving. Third, and most importantly, the result
is an example of what I think both Erich and I consider an important endeavor,
the reconciliation of the Bayesian and frequentist points of view (in context of now
rather unfamiliar asymptotics). In an important paper in the 5th Berkeley Sympo-
sium [4], Bahadur showed that the maximum likelihood ratio statistic possessed an
optimality property from the view of a large deviation based frequentist compari-
son of tests he introduced in 1960 [1]. Our paper shows that this property is shared
by Bayes test statistics for reasonable priors and conjectures that a corresponding
Bayesian optimality property holds for the maximum likelihood ratio statistic. If
true this can be viewed as the large deviation analogue of the well-known Bern-
stein von Mises’ theorem – see Lehmann and Casella [10] p.489, which establishes
the equivalence at the n−

1
2 scale of Bayesian and maximum likelihood estimates.

Establishing this conjecture is left as a challenge to the reader.
1On leave from University of California, Berkeley (1965-66).
∗Prepared with partial support of N.S.F. Grant G.P. 2593.
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Given the historical interest I have not changed the text save for typos and only
brought references up to date.

1. Introduction

In [4] one of the authors established the optimality of the classical likelihood ratio
test statistic in terms of a method of stochastic comparison previously introduced
by him in [1], [2], and [3].

In the main theorem of this paper, Theorem 2 of Section 4, we show that this
property is shared by Bayes test statistics (averages of likelihood ratios with respect
to probability measures on the parameter space) under conditions which are slightly
different from, and in some respects weaker than those given in [4]. These assump-
tions are given and discussed in Section 3. Section 5 contains a theorem establishing
the asymptotic optimality of minimax tests under appropriate restrictions.

In Section 2 we give a strengthening Theorem 1 of [4], which established a lower
bound for the slope of any family of tests in terms of the Kullback-Leibler informa-
tion numbers. The proof given here drops assumption 1 of [4] and weakens assump-
tion 2 considerably. This argument seems to give some insight into the necessity of
an assumption such as our modification of assumption 2 of [4].

2. A Generalization of a Theorem of Bahadur

Even as in [4] we let X be an abstract space, A a field on X, Pθ, θ ∈ Θ, a set of
probability measures on (X,A), and Θ0 a given subset of Θ. For any θ, θ′ we define,

(2.1) K(θ, θ′) = −
∫

X

log
dPθ′

dPθ
(x)dPθ(x) ,

where dPθ′
dPθ

is the ratio of the Radon Nikodym derivatives of Pθ, Pθ′ with respect
to (say) Pθ + Pθ′ and 0/0 is by convention equal to 1. Also let,

(2.2) J(θ) = inf{K(θ, θ′) : θ′ ∈ Θ0} .

It is well known that (cf. [4]), 0 ≤ K(θ, θ′) ≤ ∞, and necessarily the same is true
of J(θ). Following [4], let Tn be any sequence of extended real valued measurable
functions of the infinite product space (X∞,A∞) such that Tn is a function of the
first n co-ordinates only. Denote the cumulative distribution of Tn, when θ obtains,
by Fn(t, θ), i.e.,

(2.3) Fn(t, θ) = Pθ
[
Tn(s) < t

]
,

where Pθ now denotes the infinite product measure extension of Pθ to X∞. Finally,
let,

(2.4) Ln(s) = sup
{

1− Fn
(
Tn(s), θ

)
: θ ∈ Θ0

}
.

We assume that Ln is measurable. This for instance holds if Fn(Tn, θ) is a separable
stochastic process in θ for θ ∈ Θ0.

We can now state and prove, in the above framework,

Theorem 1. If ∫

X

[
log
(
dPθ
dPθ′

)]2
dPθ(x) <∞ ,
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for every θ ∈ Θ−Θ0, θ′ ∈ Θ0 such that K(θ, θ′) <∞, then

(2.5) lim inf
n

1
n

logLn(s) ≥ −J(θ)

with Pθ probability 1 for every θ ∈ Θ−Θ0.

Proof. Fix θ ∈ Θ − Θ0. Assume the Theorem has been proved for Θ0 simple.
Clearly we can suppose J(θ) < ∞ and can find {θm} with K(θ, θm) < ∞ and
K(θ, θm)→ J(θ). But then

(2.6)
1
n

logLn(s) ≥ 1
n

log
(
1− Fn(Tn(s), θm)

)
.

By our assumption of the theorem for Θ0 simple, we have

(2.7) lim inf
n

1
n

log
(
1− Fn(Tn(s), θm

)
≥ −K(θ, θm)

with probability 1. Inequalities (2.6) and (2.7) then imply (2.5). If Θ0 = {θ0},

Pθ
[

lim inf
n

1
n

logLn(s) ≥ −J(θ)
]

= 1

if and only if,

(2.8) Pθ
[
1− Fn(Tn, θ0) < an exp−nK(θ, θ0) infinitely often

]
= 0

for every 0 ≤ a ≤ 1. Fix a. Let An =
[
1−Fn(Tn, θ0) < an exp{−nK(θ, θ0)}

]
. Then,

(2.9) Pθ0(An) ≤ an exp{−nK(θ, θ0)} .

By the Neyman-Pearson lemma there exists cn, such that,

(2.10) Pθ0

{ n∑

j=1

log
dPθ
dPθ0

(xj) > ncn

}
≤ an exp{−nK(θ, θ0)}

and,

(2.11) Pθ0

{ n∑

i=1

log
dPθ
dPθ0

(xi) > ncn

}
≥ Pθ0(An) .

We require,

Lemma 1. If (2.10) holds for all n, then there exists an ε > 0 such that lim infn cn ≥
K(θ, θ0) + ε.

Proof. By a Theorem of Chernoff [7],

(2.12)
1
n

logPθ0
{ n∑

i=1

log
dPθ
dPθ0

(xi) > nz
}
→ inf

t
logH(t, z) ,

for
z ≥

∫

X

log
dPθ
dPθ0

(x)dPθ0(x) ,
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where
H(t, z) = e−tz

∫

X

( dPθ
dPθ0

)t(x)dPθ0(x) .

By the theory of the Laplace transform, 0 ≤ H(t, z) ≤ ∞, H(t, z) is strictly convex
in t wherever it is finite and if inftH(t, z) < 1, the infimum is obtained for a unique
t(z) given by the solution of the equation

(2.13) z =

∫
log dPθ

dPθ0
(x)
[
dPθ
dPθ0

(x)
]t
dPθ0(x)

∫ [
dPθ
dPθ0

(x)
]t
dPθ0(x)

.

It is easily seen that if z0 = K(θ, θ0), then t(z0) = 1, and,

(2.14) inf
t

logH(t, z0) = −K(θ, θ0) .

From (2.10), (2.12) and (2.14) we can immediately conclude that lim infn cn ≥
K(θ, θ0). But, in fact, by the implicit function theorem as z → K(θ, θ0) we have
t(z)→ 1, and logH

(
z, t(z)

)
→ K(θ, θ0), by dominated convergence. Choose z1 > z0

such that H(z1, t(z1) > a exp{−K(θ, θ0)}. Then ε = z1− z0 will do for the Lemma.

It now follows from the basic assumption of the theorem, by a result of Erdös,
Hsu and Robbins [9] that,

(2.15)
∑

n

Pθ0

[ n∑

i=1

log
dPθ
dPθ0

(xi) ≥ ncn
]
<∞ ,

and this by (2.11) and the Borel Cantelli lemma suffices for (2.8) and the theorem
to hold.

Remarks. 1. Erdös has shown in [9] that our second moment assumption is
necessary as well as sufficient for (2.15) to hold. Although, of course, (2.15) is not
necessary for (2.8) the relative arbitrariness of the An apart from condition (2.9)
would suggest that the Theorem may be false if some condition such as the one
imposed does not hold.

2. As in [4], if we define N(ε, s) = least positive m such that Ln ≥ ε for all n ≥ m
and ∞ otherwise, we have under the assumptions of our theorem 1,

(2.16) lim inf
ε→0

N(ε, s)
− log ε

≥ 1
J(θ)

a.s. Pθ .

3. General Assumptions and a Useful Lemma

Before giving further structural assumptions needed for Sections 4 and 5 we prove
a simple general lemma already implicit in [4] stating a useful sufficient condition
for a sequence {Tn} to be optimal. We say {Tn} is asymptotically optimal if,

(3.1) lim
n

1
n

logLn(s) = −J(θ)
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with Pθ probability 1 for all θ ∈ Θ−Θ0. Then (3.1) implies, (cf. [4])

(3.2) lim
ε→0

N(ε, s)
− log ε

=
1

J(θ)
a.s. Pθ .

Lemma 2. If the conclusion of Theorem 1 holds and

i) lim inf
n
Tn ≥ J(θ) a.s. Pθ

ii) lim sup
n

log
(
1−Gn(t)

)
≤ −t

where Gn(t) = inf
{
Fn(t, θ0) : θ0 ∈ Θ0

}
and θ ranges over Θ − Θ0, then {Tn} is

asymptotically optimal.

Proof. It clearly suffices to show that

(3.3) lim sup
n

1
n

logLn(s) ≤ −J(θ)

with Pθ probability 1. But since Ln(s) = 1 − Gn(Tn) and 1 − Gn(t) is monotone
decreasing, i) and ii) obviously imply (3.3).

We begin by giving nine general assumptions which are sufficient to ensure the
validity of Theorem 2 of the main section.

Assumption 1. There exists a c finite measure µ on (X,A) which dominates the
family {Pθ}. We denote the density of Pθ with respect to µ by f(x, θ). Then,

dPθ(x)
dPθ′

=
f(x, θ)
f(x, θ′)

a.e. Pθ + Pθ′ .

Assumption 2. Θ is a metric space. The topological Borel field on Θ is denoted
by B. f(x, θ) is bimeasurable in (x, θ) on (X ×Θ,A× B).

Assumption 3. We are given a probability measure ν on (Θ,B), Θ0 ∈ B, and
ν(Θ0) > 0. Moreover, if S(θ, d) is the open sphere of centre θ and radius d,
ν
{
S(θ, d) ∩ [Θ−Θ0]

}
> 0 for all θ ∈ Θ−Θ0 and d > 0.

Assumption 4. There exists a suitable metric compactification Θ̄0 of Θ0 (viz [4]).
That is, we first define Ŝ(θ, d) to be the sphere of radius d and centre θ in Θ̄0 and
then take,

(3.4) g0(x, θ, d) = sup
{
f(x, λ) : λ ∈ Ŝ(θ, d) ∩Θ0

}
.

We assume g0 is measurable in x for d sufficiently small and define,

(3.5) g0(x, θ, 0) = lim
d→0

g0(x, θ, d) .

The final assumption, (see [4]) is,

(3.6) Eθ

(
g(x, θ′, 0)
f(x, θ)

)
≤ 1 ,
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where Eθ
(
h(x)

)
denotes

∫
X
h(x)dPθ(x) for any integrable function h.

Assumption 5. Define for all θ′ ∈ Θ̄0, θ ∈ Θ−Θ0,

(3.7) K̄(θ, θ′) = −Eθ
(

log g0(x, θ′, 0)
f(x, θ)

)
.

(3.6) and Jensen’s inequality guarantee 0 ≤ K̄ ≤ ∞. Assume,

(3.8) J(θ) = inf{K(θ, θ′) : θ′ ⊂ Θ̄0} .

Assumption 6.

(3.9) Eθ

(
log

g0(x, θ′, d)
f(x, θ)

)
<∞ ,

for all θ ∈ Θ−Θ0, θ′ ∈ Θ0. As in, [4] p.22, this is equivalent to,

(3.10) lim
d→0

Eθ

(
log g0(x, θ′, d)

f(x, θ)

)
≤ −K(θ, θ′) .

Assumption 7. Define,

(3.11) η(x, θ, d) = inf
{

log
f(x, λ)
f(x, θ)

: λ ∈ S(θ, d) ∩ [Θ−Θ0]
}
.

Assume that η is a measurable function of x for d sufficiently small and that,

(3.12) lim
d→0

Eθ
(
η(x, θ, d)

)
= 0

for all θ ∈ Θ−Θ0.

Assumption 8. Define, for θ′ ∈ Θ0,

(3.13) γ(x, θ′, d) = log inf
{ f(x, λ)
f(x, θ′)

: λ ∈ S(θ′, d) ∩Θ0

}
,

(3.14) ϕ(t, θ′, d) = Eθ′
(

exp{−tγ(x, θ′, d)}
)
.

For every 0 < ρ < 1, β > 0, there exists d(θ′, ρ, β) such that

inf
t
e−tβϕ

(
t, θ′, d(θ′, ρ, β)

)
≤ ρ

2
.

Assumption 9.

inf
{
ν
[
S
(
θ′, d(θ′, ρ, β)

)
∩Θ0 : θ′ ∈ Θ0

]}
= m(ρ, β) > 0 .

We shall now examine these assumptions in turn giving where necessary stronger,
but more easily checkable conditions, which we shall denote by primes. Thus, (say)
assumption 4’ will imply assumption 4 and the conclusion of theorem 2 will continue
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to hold if 4 is replaced by 4’. The more important of these useful weakenings of
Theorem 2 will be isolated as a Corollary.

Assumption 1 is self-explanatory and clearly cannot be weakened appreciably.
The requirement that Θ be a metric space can clearly be dropped and replaced

by the requirement that Θ be a topological space and B the topological Borel field.
However, the notational convenience involved in being able to define quantities in
terms of spheres of a given radius rather than neighbourhood bases seems well
worth the loss of generality. On the other hand, assumption 2 is obviously satisfied
if we have the usual,

Assumption 2’. Θ is a subset of k dimensioinal Euclidean space with the usual
metric topology. B is the Borel σ field and f(x, θ) is bimeasurable.

Weakenings of assumption 3 do not fit readily into this program, but we mention
that we can drop the requirement that ν be a probability (finite) measure if the
following two conditions hold, as well as the second part of assumption 3:

(1) There exists N such that,
∫

Θ

∏N
i=1 f(xi, λ)ν(dλ) <∞ a.s. Pθ and

(2)
∫

Θ0

∏N
i=1 f(xi, λ)ν(dλ) > 0,

∫
Θ−Θ0

∏N
i=1 f(xi, λ)ν(dλ) > 0 a.s. Pθ for all n ≥

N .

For details of the proof of i) of Lemma 2 for T̄n under these assumptions we refer
to [6]. The basic idea of this generalization is to consider the process of observation
as really starting after N with prior distribution, the posterior distribution of θ
given x1, . . . , xN , which by (1) is a true probability distribution. In fact, we can in
general make dependent ν on the observations all along if we modify the second
part of assumption 3 and assumption 9 suitably. The generalization given above
is of interest in the case when reasonable tests arise from improper “priors”, e.g.
Lebesgue measure.

The most natural replacement of assumption 4 is of course assuming that Θ0 is
already compact. In this case, we have, Assumption 4’. Θ0 is compact.

We can then drop 5, but must replace 6 by its equivalent form,

Assumption 6’. limd→0Eθ log
(
g0(x,θ′,d)
ρ(x,θ)

)
≤ −K(θ, θ′) for all θ ∈ Θ−Θ0, θ′ ∈ Θ0.

Measurability of g0 must still of course be invoked. Assumption 6 may replace 6’
if f(x, θ) is continuous in θ for almost all x. A less stringent modification in some
senses which is most useful is combining 4, 5, and 6 with 2’ to give:

Assumption (4,5,6)” Assumption 2’ holds and

(a) limd→0Eθ

(
log g0(x,θ′,d)

f(x,θ)

)
≤ −K(θ, θ′) for θ ∈ Θ−Θ0, θ′ ∈ Θ0.

(b) limd→∞Eθ

(
log sup

{
log f(xλ,λ)

f(x,θ) : λ ∈ Θ0‖λ‖ ≥ d
})
≤ −J(θ), for all θ ∈

Θ−Θ0, where ‖ · ‖ is the usual Euclidean norm.

This assumption is clearly equivalent to 5 and 6 if in 4 we take Θ̄0 to be the closure
of Θ0 in the one point compactification of R.

Assumption 7 is most readily replaced by,

Assumption 7’. f(x, θ) is continous in θ for almost all x(µ) and, Eθ
(
η(x, θ, d)

)

<∞ for some d > 0 for each θ ∈ Θ−Θ0.
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Assumption 7’ and the dominated convergence theorem readily imply 7. We need
not require measurability of g0 in this case in view of 4 or 2’ since Θ0 being a subset
of a separable metric space is separable. The same is true of η if 2’ holds or more
generally if Θ is a separable metric space.

A useful substitute for assumption 8 is

Assumption 8’. There exists an M < ∞ such that for every 0 < T < ∞ we can
find a dx(θ, T ) with ϕ(T, θ′, dx) ≤M . Assumption 8’ easily implies 8 since, then,

(3.15) inf
t
e−tβϕ(T, θ′, dx) ≤ e−TβM <

ρ

2
,

for T sufficiently large.
In many situations 8’ is most easily verified by showing that,

(3.16) ϕ(t, θ′, d)→ 1 ,

uniformly on compacts in t as d→ 0. This in turn is implied by,

Assumption 8”. f(x, θ) is continuous in θ for almost all x(µ) and for every 0 <
T <∞, ϕ(T, θ′, d) <∞ for d sufficiently small.

Assumption 8” implies (3.16) by way of the dominated convergence theorem if
we remark that ϕ(t, θ′, d) is monotone increasing in t for every fixed θ′, d.

Finally, we can replace assumption 9 by,

Assumption 9’. d(θ, ρ, β) is independent of θ′, assumption 4’ holds, and ν
[
S(θ′, d)∩

Θ0

]
> 0 for all θ′ ∈ Θ0.

To show that 9’ implies 9 we need only prove that,

(3.17) inf
{
ν
[
S(θ′, d) ∩Θ0

]
: θ′ ∈ Θ0f > 0 .

Then, if θ′n → θ′ and, S∗(θ, d) = S(θ, d) ∩Θ0

ν
[
S∗(θ′, d)

]
− ν
[
S∗(θ′n, d)

]
= ν

[
λ : δ(λ, θ′) < d, δ(λ, θ′n) ≥ d, λ ∈ Θ0

]

− ν
[
λ : δ(λ, θ′) ≥ d, δ(λ, θ′n) < d, λ ∈ Θ0

]
.(3.18)

Clearly, if n → ∞, the first term of the above difference tends to 0 since the
set whose measure is computed tends to the empty set. Therefore, for fixed d,
ν
[
S∗(θ′, d)

]
is a lower semi-continuous function of θ′ on Θ0 and 2’, and the third

part of 9’, imply (3.17).
This completes our roster of simplifying assumptions. Clearly if further restric-

tions are put on f(x, θ) the verification of most can be very easy. A strong form of
Lemma 3, τn → J(θ), is given under very weak assumptions in [5] if f(x, θ) is of
exponential type, (Theorem 4.1). If the conditions 1-7 of this paper are made two
sided (viz. [5] Theorem 4.2) one can obtain this strengthening of Lemma 3 in gen-
eral. In fact, the conditions detailed in theorem 4.2 of [5] are somewhat restrictive
versions of our conditions 2’–7’.

The assumptions required by this paper but not by [4] are 7, 8, and 9. On
the other hand, assumption 6 of that paper and the fact that Θ can be suitably
compactified (rather than just Θ0) is not required by us. Since simple hypotheses
tend to be somewhat more common than simple alternatives this seems a gain.
Otherwise the non structural assumptions of this paper and [4] coincide.
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4. The Main Theorem

Given ν in assumption 3 we now define,

(4.1) T̄n =
1
n

log

∫
Θ−Θ0

∏n
i=1 f(xi, λ) ν(dλ)∫

Θ0

∏n
i=1 f(xi, λ) ν(dλ)

.

By assumption 2, T̄n is well defined
(∞
∞ = 1, 0

0 = 1
)
. In fact, T̄n is a version of the

test statistic a Bayesian with prior ν would use to test H : θ ∈ Θ0, rejecting for
large values of T̄n. We can now state the principal theorem of the paper.

Theorem 2. If assumptions 1–9 and the conclusion of Theorem 1 holds, then {T̄n}
is asymptotically optimal.

Proof. The proof preceeds by way of some lemmas. We have first,

Lemma 3. Under assumptions 1–7, {T̄n} satisfies condition i) of Lemma 2.

Proof. Suppose that θ ∈ Θ−Θ0 holds. Define,

(4.2) Un(s, θ) =
∫

Θ−Θ0

n∏

i=1

f(xi, λ)
f(xi, θ)

ν(dλ)

(4.3) Vn(s, θ) =
∫

Θ0

n∏

i=1

f(xi, λ)
f(xi, θ)

ν(dλ) .

Then,

(4.4) T̄n =
1
n

log
Un(s, θ)
Vn(s, θ)

.

We show first,

(4.5) lim sup
n

1
n

log Vn(s, θ) ≤ −J(θ)

a.s. Pθ. Note that,

(4.6)
1
n

log Vn(s, θ) ≤ 1
n

log
(

sup
{ 1
n

n∑

i=1

log
f(xi, λ)
f(xi, θ)

: λ ∈ Θ0

})
.

And the right hand side equals R0(Θ0, θ) in the notation of [4] which converges
to −J(θ) a.s. Pθ by Lemma 4 of that paper. An examination of the proof of this
Lemma will show that only our assumptions 1–6 are used.

To establish the Lemma we need now only show,

(4.7) lim inf
n

1
n

logUn(s, θ) ≥ 1 a.s. Pθ.

By assumption 7 we can find d1(θ, ε) such that,

(4.8) Eθ
(
η(Xi, θ, d1)

)
≥ −ε .
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But,

1
n

logUn ≥ log ν
[
S(θ, d1) ∩ [Θ−Θ0]

]

+ inf
{ 1
n

n∑

i=1

f(Xi, λ)
f(Xi, θ)

: λ ∈ S(θ, d1) ∩ [Θ−Θ0]
}

≥ 1
n

n∑

i=1

η(x1, θ, d1) + log ν
[
S(θ, d1) ∩ [Θ−Θ0]

]
.(4.9)

Letting n → ∞ and then ε → 0, (4.9), assumption 3, and the strong law of large
numbers imply (4.7). The Lemma follows.

We complete the proof of the Theorem by way of two further Lemmas.

Lemma 4. Under the first part of assumption 3, for all n, t, θ′ ∈ Θ0,

(4.10) Pθ′
[ 1
n

logUn(s, θ′) ≥ t
]
≤ e−nt.

Proof.

Pθ′
[ 1
n

logUn(s, θ′) ≥ t
]

=
∫

W

n∏

i=1

f(xi, θ′) µ(dx1) . . . µ(dxn)

where W =
[
s :

n∏

i=1

f(xi, θ′) ≤ e−nt
∫

Θ−Θ0

n∏

i=1

f(xi, λ)ν(dλ)
]
.

Thus our probability is bounded above by

(4.11) e−nt
∫

Xn

∫

Θ−Θ0

n∏

i=1

f(xi, λ)ν(dλ) µ(dx1) . . . µ(dxn) .

But the right hand side of (4.11), by Fubini’s theorem, is

e−nt
∫

Θ−Θ0

∫

Xn

n∏

i=1

f(xi, λ) µ(dx1) . . . µ(dxn)ν(dλ) ≤ e−nt .

Lemma 5. Under assumptions 8 and 9 if θ′ ∈ Θ0, for every 0 < ρ < 1, β > 0,
there exist N(ρ, β) such that for n ≥ N(ρ, β)

(4.12) Pθ′
[ 1
n

log Vn(s, θ′) ≥ −β
]
≤ ρn .

Proof. Choose d(θ′, ρ, β) as in assumptions 8 and 9. Then since

1
n

log Vn(S, θ′) ≥ log ν
[
S(θ′, d(θ′, ρ, β) ∩Θ0

]

+ inf
{ 1
n

n∑

i=1

log
f(xi, λ)
f(xi, θ′)

: λ ∈ S(θ′, d(θ′, ρ, β) ∩Θ0

}

≥ log ν
[
S
(
θ′, d(θ′, ρ, β)

)
∩Θ0

]
+

1
n

n∑

i=1

γ
(
xi, θ

′, d(θ′, ρ, β)
)
,(4.13)
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we have,
(4.14)

Pθ′
[ 1
n

log Vn(s, θ′) ≤ −β
]
≤ Pθ′

[ n∑

i=1

γ
(
xi, θ

′, d(θ′, ρ, β)
)
≤ −nβ − logm(ρ, β)

]
.

By Lemma 1 of [4]

Pθ′
[ 1
n

n∑

i=1

γ
(
xi, θ

′, d(θ′, ρ, β)
)
≤ −nβ − logm(ρ, β)

]

≤ inf
t

{
exp

[
− βt− logm(ρ, β)

t

n

]
ϕ
(
t, θ′, d(θ′, ρ, β)

)}n
(4.15)

for n ≥ − logm(ρ,β)
β which is finite by assumption 9. If inft e−βtϕ

(
t, θ′, d(θ′, ρ, β)

)
is

attained for t = t0 which is strictly positive by lemma 1 of [4], we can choose,

N(ρ, β) ≤ max
(
− logm(ρ, β)

β
,− t0 logm(ρ, β)

log 2

)
<∞ .

Now,

Pθ′
[ 1
n

log T̄n ≥ t
]
≤ Pθ′

[ 1
n

logUn(s, θ′) ≥ −β, 1
n

log Vn(s, θ′) ≥ −β
]

+ Pθ′
[ 1
n

log Vn(s, θ′) ≤ −β
]
.(4.16)

By Lemmas 4 and 5 the right hand side of (4.16) is bounded above by e−n(t−β) +ρn

for n ≥ N(ρ, β). Hence,

lim sup
n

1
n

log sup
{
Pθ′ [T̄n ≥ t] : θ ∈ Θ0

}
≤ lim sup

n

1
n

log
(
e−n(t−β) + ρn

)

= max[−(t− β), log ρ] .(4.17)

Letting ρ→ 0 first and then β → 0, we find that ii) of Lemma 2 is satisfied by T̄n
and the Theorem is proved. Gathering the most useful of the “prime” assumptions
together we state,

Corollary 1. If assumptions 1, 2’, 3, (456)′′, 7’, 8”, and 9 hold, then the conclu-
sion of Theorem 2 is valid.

The most immediate field of application of Corollary 1 is when f(x, θ) is the
density of a Koopman-Darmois (exponential) family.

(4.18) f(x, θ) = eθ.t(x)

where θ = (θ1, . . . , θk), t(x) =
(
t1(x), . . . , tk(x)

)
and the θj , tj are real. Assumptions

1, 2’, (456)′′, 7’ and 8” are then automatically satisfied and we need only impose
conditions 3, and 9 on ν. If Θ0 is compact, 9’ is automatic and 3 is all that is
needed.
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5. Optimality of Minimax Tests

The main result of this section is an immediate consequence of the following Lemma.
We retain the notation of the previous section, defining only

(5.1) F̄n(t, θ) = Pθ[T̄n < t] .

(5.2) Ḡn(t) = inf
{
F̄n(t, θ′) : θ′ ∈ Θ0

}
.

Lemma 6. Suppose that there exists a measurable subset S of Θ0 such that,
iii) 1− F̄n(t, θ′) is a constant on S (for fixed n, t) as a function of θ′ .
iv) sup

{
1− F̄n(t, θ′) : θ′ ∈ S

}
= 1− Ḡn(t).

v) ν[Θ0 − S] = 0.
Then,

(5.3) lim sup
n

1
n

log
(
1− Ḡn(t)

)
≤ −t .

Proof.

(5.4)
(
1− Ḡn(t)

)
= sup

{
1− F̄n(t, θ′) : θ′ ∈ S

}
=
∫

Θ0

Pθ′ [T̄n ≥ t]ν(dθ′)

by iii), iv), v). Now, let

Cn =
[ ∫

Θ0

n∏

i=1

f(xi, λ)ν(dλ) ≤ e−nt
∫

Θ−Θ0

n∏

i=1

f(xi, λ)ν(dλ)
]
.

Then,

∫

Θ0

Pθ′ [T̄n < t]ν(dθ′) =
∫

Θ0

∫

Cn

n∏

i=1

f(xi, λ)µ(dx1) . . . µ(dxn)ν(dλ)

=
∫

Cn

∫

Θ0

n∏

i=1

f(xi, λ)µ(dx1) . . . µ(dxn)ν(dλ)

≤ e−nt
∫

Cn

∫

Θ−Θ0

n∏

i=1

f(xi, λ)ν(dλ)µ(dx1) . . . µ(dxn) ≤ e−nt .(5.5)

We formulate,

Assumption 10. For every n, t

a) ν
[
θ ∈ Θ−Θ0 : sup

{
F̄n(t, λ) : λ ∈ Θ−Θ0

}
> F̄n(t, θ)

]
= 0.

b) ν
[
θ′ : Ḡn(t) < Fn(t, θ′) : θ′ ∈ Θ0

]
= 0.

We can now state,

Theorem 3. If assumption 10 holds the test which rejects if T̄n ≥ t is minimax for
H : θ ∈ Θ0 vs K : θ ∈ Θ−Θ0 at level 1−Ḡn(t). If assumptions 1–7 and assumption
10b) hold, then the sequence of test statistics {T̄n} is asymptotically optimal.
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Proof. The first part of the Theorem is classical (c.f. Lehmann [8] p.327). The second
part is an immediate consequence of Theorem 2 and Lemma 5 since assumption
10b) is equivalent to iii), iv), v).

This Theorem is of interest in connecting the classical finite sample optimality
results with stochastic comparison. The most immediate application of this result
is in the one-parameter exponential family where minimax tests of (say) H : θ ≤ θ0

vs K : θ = θ1 > θ are. Bayes tests with respect to two point distributions satisfy
assumption 10 (cf. [8]). Unfortunately proving optimality directly is trivial in this
case. More interesting candidates are in the normal situation the t-statistic and
the S2 statistic used in testing H : µ < µ0 and H : σ ≤ σ0 when µ, and σ are
respectively unknown. Although we are here presented with a situation which does
not quite fall under Theorem 3, (ν satisfying 10a,b depends on n, (cf. [8], p.94),
one can easily check the conclusion of Lemma 2 directly and then apply Lemma 5
to obtain optimality.

Finally, it may be interesting to see that from a quasi Bayesian point of view,
if stochastic comparison is defined in terms of the observed expected level of sig-
nificance, (where the expectation is taken under the prior) then Lemma 5 and
assumptions 1–7 and an analogue of Theorem 1 guarantee the optimality of T̄n in
this sense. Formally for any sequence {Tn} we would then consider not Ln but,

L∗n(s) =
(
1−G∗n(Tn)

)

where G∗n(t) =
∫

Θ0
Fn(t, θ′)ν(dθ′).

The analogue of the conclusion of Theorem 1 needed would be that a.s. Pθ,

lim inf
n

1
n

logL∗n ≥ −J(θ) .
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On the Non-Optimality of Optimal

Procedures

Peter J. Huber1

Abstract: This paper discusses some subtle, and largely overlooked, differ-
ences between conceptual and mathematical optimization goals in statistics,
and illustrates them by examples.
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1. Introduction

First, we shall identify those parts of statistics that rely in a crucial fashion on opti-
mization. The most conspicuous among them are: classical mathematical statistics,
decision theory, and Bayesian statistics.

Classical mathematical statistics was created by R. A. Fisher (1922), in a paper
concerned with estimation, and by J. Neyman and E. S. Pearson (1933), in a paper
concerned with testing. It was brought to completion by E. L. Lehmann in his
lecture notes (1949, 1950); those notes later grew into two books (1959, 1983).
Around the same time when Lehmann produced his lecture notes, A. Wald (1950)
expanded the scope of mathematical statistics by creating statistical decision theory.

1POB 198, 7250 Klosters, Switzerland, email: peterj.huber@bluewin.ch
Keywords and phrases: optimality, superefficiency, optimal robustness, breakdown point, opti-

mal design, Bayesian robustness
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The central concerns of classical mathematical statistics were efficiency in esti-
mation (i.e. minimum variance), and power in testing problems, both being opti-
mality concerns. Decision theory confirmed the central interest in optimality, but
shifted the emphasis to admissibility and minimaxity.

A heavy slant towards optimality, of a different origin, holds also for Bayesian
statistics. For a given model, consisting of a prior distribution and a family of con-
ditional distributions, the Bayes formula by definition gives the “best” procedure;
it is admissible in decision theoretic terminology.

The above-mentioned three areas of statistics appear to be the only ones where
optimality is central to the theory. Elsewhere, optimality seems to provide mere ic-
ing on the cake. Note that the papers of Fisher and of Neyman-Pearson imprinted
subsequent generations of statisticians with an (often uncritical) love of optimality.
By 1960, as a young mathematical statistician you would not dare submit a new
procedure to a reputable journal, unless you could prove some optimality prop-
erty. (Later, there was a reversal, and too many statistical algorithms may have
slipped through the editorial gates with enthusiastic but inadequately substanti-
ated claims.)

2. On Optimization and Models

Mathematical optimization always operates on some model. Models are simplified
approximations to the truth; the hope is that optimality at the model translates
into approximate optimality at the true situation. In the sciences, the main purpose
of models is different: they are to assist our conceptual understanding, and to help
with communication of ideas.

In traditional statistics there is no methodology for assessing the adequacy of a
model. At best, traditional statistics can reject a model through a goodness-of-fit
test — and Bayesian statistics cannot even do that. A non-rejected model is not
necessarily adequate, and even more embarrassing, a rejected model sometimes may
provide a perfectly adequate approximation.

3. Classical Mathematical Statistics and Decision Theory

Classical mathematical statistics provides a clean theory under very restrictive as-
sumptions, such as restricting the underlying models to exponential families, or the
procedures to unbiasedness or invariance.

Decision theory clarified the classical views and reduced the dependence on re-
strictions. It also opened new areas, in particular optimal design theory (Kiefer
1959). But on the whole, decision theory was less successful than originally hoped.
The two principal success stories are the Stein estimates (James and Stein 1961),
relating to admissibility, and robustness (Huber 1964), relating to minimaxity.

4. Tukey’s 1962 Paper

In his long 1962 paper “The Future of Data Analysis”, while ostensibly talking
about his personal predilections, Tukey actually redefined the field of statistics.
Tukey’s central theme was his emphasis on judgment (Section 7). At the same time,
he played down the importance of mathematical rigor and optimality (Sections
5 and 6). Possibly the most important issue worked out in his long and multi-
faceted paper was that there is more to theoretical statistics than mathematical
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statistics. This reminds one of Clausewitz (1832), who castigated the theorists of
military strategy of his time because they “considered only factors that could be
mathematically calculated”.

In his paper, Tukey eschewed models. Why? Perhaps because in traditional
statistics models erroneously are considered as substitutes for the truth, rather
than as simplified approximations. Note in particular his quote of Martin Wilk at
the end of Section 4: “The hallmark of good science is that it uses models and
‘theory’ but never believes them”.

Tukey of course was not the first to question the role of models and of optimality.
Statistical methods based on ranks and nonparametrics had become popular pre-
cisely because they avoided dependence on uncertain models and were valid under
weaker assumptions, even if they lacked the flexibility and wide applicability of the
parametric approaches.

But the problems with models and optimality go deeper. They have less to do
with the idealized models per se, but more with the procedures optimized for them.

5. Pitfalls of Optimality

There are four basic pitfalls, into which mathematically optimal procedures can be
trapped:

(i) the Fuzzy Concepts Syndrome:
sloppy translation of concepts into mathematics,

(ii) the Straitjacket Syndrome:
overly restrictive side conditions,

(iii) the Scapegoat Syndrome:
confuse the model with the truth,

(iv) the Souped-Up Car Syndrome:
optimize speed and produce a delicate gas-guzzler.

These pitfalls affect distinct, very different aspects of statistics, namely: (i) con-
cepts, (ii) procedures, (iii) models, and (iv) target functions. The list of course is
not exhaustive. The pitfalls shall be discussed with the help of ten examples:

Classical:
(1) superefficiency
(2) unbiasedness, equivariance
(3) efficiency at the model

Robustness:
(4) asymptotics for finite ε
(5) finite n, finite ε
(6) asymptotics for infinitesimal ε
(7) optimal breakdown point

Design:
(8) optimal designs
(9) regression design and breakdown

Bayesian statistics:
(10) Bayesian robustness
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6. Examples from Classical Statistics

The three “classical” examples (1)-(3) neatly illustrate the first three pitfalls.

6.1. The Fuzzy Concepts Syndrome

Problems caused by the Fuzzy Concepts Syndrome mostly are relics from earlier
development stages of statistical theories. In a conference on Directions for Mathe-
matical Statistics, I had argued (Huber 1975b): “In statistics as well as in any other
field of applied mathematics [...] one can usually distinguish (at least) three phases
in the development of a problem. In Phase One, there is a vague awareness of an
area of open problems, one develops ad hoc solutions to poorly posed questions, and
one gropes for the proper concepts. In Phase Two, the right concepts are found [...].
In Phase Three, the theory begins to have a life of its own, [...] and its boundaries
of validity are explored by leading it ad absurdum; in short, it is squeezed dry.”
In the 1970s there had been widespread anxiety about the future of mathematical
statistics. As a deeper reason for this anxiety I had proposed the diagnosis that too
many of the then current activities belonged to the later phases of Stage Three.

In the groping phase, somewhat reckless heuristics can be beneficial. The con-
cepts inevitably are fuzzy, and correspondingly, they are translated into mathe-
matics in a sloppy fashion. But recklessness, fuzziness and sloppiness should be
cut down at the latest at the beginning of the squeezing phase (the “consolidation
phase”, in Erich Lehmann’s terminology). Though, in the later phases it is tempt-
ing to concentrate on the mathematical formalism and to neglect a re-examination
of its conceptual origins. And admittedly, even in the mathematical formalism,
any attempts to eliminate sloppiness in its entirety will lead to an admirable, but
non-teachable theory, as already Whitehead and Russell with their monumental
Principia Mathematica (1910–13) have demonstrated.

In mathematical statistics, asymptotics is exceptionally prone to sloppiness. De-
tails notoriously are not adequately elaborated. Indeed, the expression “asymptotic
theory” itself is used misleadingly. In standard mathematical usage asymptotic the-
ory ordinarily is concerned with asymptotic expansions. Statistics knows such ex-
pansions too (e.g. Edgeworth expansions), but mostly, “asymptotic theory” denotes
what more properly should be called “limiting theory”. A few examples follow.

• Remainder terms? With asymptotic expansions, the first neglected term gives
an indication of the size of the error. In statistics, asymptotic results hardly
ever are complemented by remainder terms, however crude. That is, whatever
the actual sample size is, we never know whether an asymptotic result is
applicable.

• What kind of asymptotics is appropriate? In regression, for example, we have
n observations and p parameters. Should the asymptotics be for p fixed, n→
∞, or for p/n→ 0, or for what?

• Order of quantifiers and limits? Usually, one settles on an order that makes
proofs easy.

Example 1. Perhaps the most illuminating case of the Fuzzy Concepts Syndrome
has to do with superefficiency. There is a famous pathological example due to
Hodges (see LeCam 1953). Assume that the observations (x1, . . . , xn) are i.i.d. nor-
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mal N (θ, 1). Estimate θ by

Tn = x̄, if |x̄| ≥ n−1/4

Tn = x̄/2, if |x̄| < n−1/4.

Then Tn is consistent for all θ, with asymptotic variance n−1 for θ 6= 0, but 1
4n
−1

for θ = 0. That is, the estimate Tn is efficient everywhere, but superefficient at
0. See Lehmann (1983, p. 405–408) for a discussion of various responses to the
unpleasantness caused by Hodges’ example.

Informally, asymptotic efficiency means that in large samples the variance of the
estimate approaches the information bound, and this for all θ. Everyday language
is notoriously ambiguous about the order of the quantifiers. For example we may
spell out asymptotic efficiency as:

(1) (∀ε > 0) (∀θ) (∃n0) (∀n > n0) {Tn is ε-efficent},

where we define ε-efficiency by, say,

(2) {Tn is ε-efficent} =
{
Eθ
(
n(Tn − θ)2

)
< 1/I(θ) + ε

}
.

But then, for any fixed n, Tn might be arbitrarily bad for some θ. Therefore, since we
do not know the true value of θ, we never will know whether an estimate satisfying
(1) is any good, however large n is. In other words: while the definition of asymptotic
efficiency may be technically in order, it is conceptually inacceptable.

On closer inspection we conclude that the order of quantifiers in (1) does not
correspond to our intuitive concept of asymptotic efficiency. An improved version
is obtained by interchanging the second and third quantifiers:

(3) (∀ε > 0) (∃n0) (∀θ) (∀n > n0) {Tn is ε-efficent}.

It turns out that this version excludes superefficiency.
But version (3) still is negligent. Conceptually, unbounded loss functions are un-

satisfactory. Technically, the awkward fact is that for very long-tailed distributions,
the expectation in (2) may fail to be finite for all n and all “reasonable” estima-
tors (i.e. for all estimators Tn whose value is contained in the convex hull of the
observations, cf. Huber 1972, p. 1047), while the limiting distribution exists and
has a finite variance. To obtain a definition of asymptotic efficiency working more
generally we might rewrite (3) to
(4)

(∀c > 0)(∀ε > 0)(∃n0)(∀θ)(∀n > n0)
{
Eθ

(([√
n(Tn − θ)

]+c
−c

)2
)
< 1/I(θ) + ε

}
.

Here, [x]ba = max(a,min(b, x)). Of course, (4) is not yet the final word; for example,
we might want to replace the global uniform bound by a local one.

In my opinion Hodges’ example should not be considered as a local improvement
of the standard estimate, comparable to the James-Stein estimate, but rather as
an ingenious spotlight on a conceptual inadequacy of the traditional formalization
of asymptotic efficiency. This interpretation is not new. In particular, the crucial
technical result, namely that one-sided locally uniform bounds suffice to prevent
superefficiency, had been published in an abstract more than 40 years ago (Huber
1966). But I never had found a congenial outlet for the philosophical side of the
result; it took the present symposium to provide one.
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6.2. The Straitjacket Syndrome

Example 2. Classical examples of the Straitjacket Syndrome, that is of overly
restrictive side conditions on the procedures, are well known and do not need a
detailed discussion. One is furnished by unbiasedness: unbiased estimates may not
exist, or they may be nonsensical, cf. Lehmann (1983, p. 114). Other examples
occur with invariance (more properly: equivariance): equivariant estimates may be
inadmissible (Stein estimation).

6.3. The Scapegoat Syndrome

This subsection is concerned with excessive reliance on idealized models. The word
“scapegoat” refers to the pious belief that the gods of statistics will accept the
model as a substitute for the real thing.

As statisticians, we should always remember that models are simplified approxi-
mations to the truth, not the truth itself. Sometimes they are not even that, namely
when they are chosen for ease of handling rather than for adequacy of represen-
tation; typical examples are conjugate priors in Bayesian statistics. The following
eye-opening example gave rise to robustness theory.

Example 3. In 1914, Eddington had advocated the use of mean absolute deviations,
against root-mean-square (RMS) deviations, as estimates of scale. Fisher (1920)
objected and showed that for normal errors RMS deviations are 12% more efficient.
Tukey (1960) then pointed out that for the contaminated normal error model

(5) F (x) = (1− ε)Φ(x/σ) + εΦ(x/(3σ))

mean absolute deviations are more efficient for all 0.002 < ε < 0.5.
The unfortunate fact is that errors in real data typically are better approximated

by a contamination model with a contamination rate (“gross error rate”) in the
range 0.01 < ε < 0.1, than by the normal model.

The main lesson to be learnt from the Eddington–Fisher–Tukey example is that
the standard normal error model may be quite accurate, especially in the center of
the distribution. The problem is that the tail behavior of real data, to which the
traditional estimates are highly sensitive, usually is rather indeterminate and diffi-
cult to model. The mistake of Fisher (and others) had been to treat the standard
model as the exact truth.

We note a few conclusions from such examples:

• Optimality results put in evidence what can (and what cannot) be achieved
in an ideal world.

• Notoriously, optimal procedures are unstable under small deviations from the
ideal situation.

• The task thus is to find procedures that achieve near optimality under the
ideal situation, but that are more stable under small deviation.

In 1964, I had begun to implement a program suggested by this under the name
of robustness. The guiding ideas were:

– Keep the optimality criterion (asymptotic variance, . . . ).
– Formalize small deviations (ε-contamination, . . . ).
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– Find best sub-optimal procedures (best in a minimax sense).

The robustness notion I had adopted corresponds to Tukey’s 1960 version.
Though, this is not the unique interpretation of robustness occurring in the lit-
erature. In the 1970’s, under Tukey’s influence, there was a semantic shift, adopted
by many, namely that the purpose of robustness was to provide procedures with a
strong performance for a widest possible selection of heavy-tailed distribution.

But I still prefer the original 1960 version. In particular, I hold that robust-
ness should be classified with parametric procedures, and that local stability in a
neighborhood of the parametric model is the basic, overriding requirement.

7. Problems with Optimality in Robustness

Robustness had been designed to safeguard against pitfalls of optimal procedures.
But optimal robustness is vulnerable to the very same pitfalls, and there are even a
few new variants. The conceptual problem mentioned below in Example 4, and its
solution described in Example 5, both have received less resonance in the robustness
literature than they would have deserved. While the influence function without
doubt is the most useful heuristic tool of robustness, one ought to be aware that
optimality results based on it are no better than heuristic (Example 6).

7.1. Asymptotic Robustness for Finite ε > 0

Example 4. In the decision theoretic formalization of my 1964 paper I had imposed
an unpleasant restriction on Nature by allowing only symmetric contaminations.
The reason for this was that asymmetric contamination causes a bias term of the
order O(1). Asymptotically, this bias then would overpower the random variability
of the estimates (which typically is of the order O(n−1/2)). Automatically, this
would have led to the relatively inefficient sample median as the asymptotically
optimal estimate. On the other hand, for the sample sizes and contamination rates of
practical interest, the random variability usually is more important. Simultaneously,
the symmetry assumption had permitted to extend the parameterization to the
entire ε-neighborhood and thereby had made it possible to maintain a standard
point-estimation approach.

The assumption of exact symmetry is repugnant, it violates the very spirit of
robustness. Though, restrictions on the distributions are much less serious strait-
jackets than restrictions on the procedures (such as unbiasedness). The reason is
that after performing optimization under symmetry restrictions, one merely has to
check that the resulting asymptotically “optimal” estimate remains nearly optimal
under more realistic asymmetric contaminations, see Huber (1981, pp. 104–106).

Curiously, people have worried (and still continue to worry!) much more about
the symmetry straitjacket than about a conceptually much more serious problem.
That problem is that 1% contamination has entirely different effects in samples
of size 10 or 1000. Thus, asymptotic optimality theory need not be relevant at all
for modest sample sizes and contamination rates, where the expected number of
contaminants is small and may fall below 1. Fortunately, this question could be
settled through an exact finite sample theory – see the following example. This
theory also put to rest the problem of asymmetric contamination.
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7.2. Finite Sample Robustness for Finite ε > 0

Example 5. To resolve the just mentioned conceptual problem, one needs a finite
sample robustness theory valid for finite ε > 0. Rigorous such theories were de-
veloped early on, see Huber (1965) for tests and Huber (1968) for estimation. The
latter covers the same ground as the original asymptotic robustness theory, namely
single parameter equivariant robust estimation. Gratifyingly, it leads to procedures
that are qualitatively and even quantitatively comparable to the M -estimators ob-
tained with the asymptotic approach.

This finite sample approach to robustness does not make any symmetry as-
sumptions and thus also avoids the other objections that have been raised against
asymptotic robustness theory. In particular, by aiming not for point estimates, but
for minimax interval estimates, it bypasses the parameterization and asymmetry
problems. Despite its conceptual importance, the finite sample theory has attained
much less visibility than its asymptotic and infinitesimal cousins. I suspect the rea-
son is that the approach through an unconventional version of interval estimates
did not fit into established patterns of thought. In the following I shall sketch the
main ideas and results; for technical details see Huber (1968).

Just as in the original asymptotic theory, we consider the one-parameter location
problem and assume that the error distribution is contained in an ε-neigborhood
of the standard normal distribution. The optimally robust finite sample estimator
turns out to be an M -estimate T defined by

(6)
∑

ψ(xi − T ) = 0,

where ψ(x) = [x]k−k = max(−k,min(k, x)) for some k > 0. But instead of minimiz-
ing the maximal asymptotic variance, this estimator is optimal in the sense that it
minimizes the value α for which one can guarantee

(7) P{T < θ − a} ≤ α, P{T > θ + a} ≤ α

for all θ and all distributions in the ε-neighborhood.
We have three free parameters, n, ε and a. Interestingly, the characteristic pa-

rameter k of the ψ-function depends only on ε and a, but not on the sample size
n. In (7), instead of minimizing α for fixed a, we might alternatively minimize a
for fixed α. The asymptotic theory can be linked to these exact finite sample op-
timality results in several different fashions. In particular, if we let n → ∞, but
keep both α and k fixed, then a and ε of the optimally robust estimates go to 0
at the rate O(n−1/2). Conceptually, ε-neighborhoods shrinking at a rate O(n−1/2)
make eminent sense, since the standard goodness-of-fit tests are just able to detect
deviations of this order. Larger deviations should be taken care of by diagnostics
and modeling, while smaller ones are difficult to detect and should be covered (in
the insurance sense) by robustness.

7.3. Asymptotic Robustness for Infinitesimal ε

Example 6. Parametric families more general than location and scale are beyond
the scope of the above approaches to robustness. Hampel proposed to attack them
via gross error sensitivity: minimize asymptotic variance at the model, subject to a
bound on the influence function (see Hampel 1974, and Hampel et al. 1986). This
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approach is infinitesimal in nature and stays strictly at the parametric model. In
essence, it is concerned only with the limiting case ε = 0.

Heuristically, it combines two desirable properties of robust estimates: good ef-
ficiency at the model, and low gross error sensitivity. However, a bound on the
latter at the model does not guarantee robustness (local stability in a neighborhood
of the model), there are counter examples with L-estimates, see Huber (1981, pp.
71–72). Thus, the conceptual basis of this approach is weak. Even if it should yield
robust procedures, we have no guarantee that they are approximately optimal for
non-zero ε, and we thus have to pray to the statistical gods that they will accept
an infinitesimal scapegoat. As a minimum, one ought to check the breakdown point
of procedures constructed by this method.

There is a conceptually more satisfactory, but technically more complicated al-
ternative approach via shrinking neighborhoods: while n → ∞, let ε → 0 at the
rate O(n−1/2). This particular asymptotic theory had been motivated by the finite
sample approach of Example 5. It was introduced by C. Huber-Carol in her thesis
(1970) and later exploited by Rieder in several papers, culminating in his book
(1994). The limiting results are comparable to those obtained with the infinitesi-
mal approach, and like these, in the location parameter case they agree with those
obtained in Example 4.

The principal heuristic appeal of the shrinking neighborhood approach is that in
the location case it yields a sequence of estimates that have a well-defined optimality
property for each n. We therefore can hope that in the general case it yields a
sequence of estimates that are approximately optimal for non-zero ε. But to be
honest, we have no way to check whether the heuristic arguments reliably carry
beyond the location case. That is, we may run into a fifth pitfall: overly optimistic
heuristics.

7.4. Optimal Breakdown Point

Hampel, at that time a student of Erich Lehmann, in his Ph.D. thesis (1968) had
introduced the breakdown point by giving it an asymptotic definition. Conceptu-
ally, this may have been misleading, since the notion is most useful in small sample
situations, see Donoho and Huber (1983). With large samples and high contami-
nation rates you may have enough data to interpret the information contained in
the contamination part. Therefore, rather than blindly using high breakdown point
procedures, you may spend your efforts more profitably on an investigation of mix-
ture models.

Example 7. All standard regression estimates, including the one based on least
absolute deviations (the L1-estimate, which generalizes the highly robust sample
median), are sensitive to observations sitting at influential positions (“leverage
points”). A single bad observation at an extreme leverage point may cause break-
down. Clearly, a higher breakdown point would be desirable. How large can it be
made, and how large should it be? Via projection pursuit methods it is indeed
possible to approach a breakdown point of 1/2 in large samples, provided the data
are in general position (i.e., under the idealized, uncorrupted model no p rows of
the n-by-p design matrix are linearly dependent, and thus any p observations give
a unique determination of θ). This is a result of considerable theoretical interest.

Unfortunately, all estimators that try to optimize the breakdown point seem
to run into the Souped-up Car Syndrome. The first among them was the LMS-
estimate (Hampel 1975, Rousseeuw 1984).
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The LMS- (Least Median of Squares) estimate of θ modifies the least squares
approach by minimizing the median instead of the mean of the squared residuals:

(8) median
{

(yi − xTi θ)2
}
.

If the data points are in general position, its breakdown point is ([n/2]−p+2)/n→
1/2. But it has the following specific drawbacks:

– Its efficiency is low: the dispersion of the estimate decreases at the rate n−1/3,
instead of n−1/2.

– Its computational complexity increases exponentially with p.
– What if the points are not in general position?

My conclusion is that an asymptotic theory for large p and n does not make much
sense under such circumstances, and a small sample theory is not available.
S-estimates were introduced by Rousseeuw and Yohai (1984) to overcome some

of these shortcomings. They estimate θ by minimizing a suitable robust M -estimate
of the scale of the residuals. Under suitable regularity conditions their breakdown
point also approaches 1/2 in large samples, and they reach a high efficiency at
the ideal model, with a dispersion converging at the rate n−1/2. Unfortunately, S-
estimators suffer from a serious flaw which probably cannot be removed, namely
that uniqueness and continuity can only be proved under certain conditions, see
Davies (1993, Section 1.6).

Moreover, Davies (ibid.) points out that all known high breakdown point esti-
mators of regression are inherently unstable. Paradoxically, it thus seems that in
order to achieve an optimal regression breakdown point we may have to sacrifice
robustness.

8. Design Issues

8.1. Optimal Designs

Example 8. Assume that the task is to fit the best possible straight line to data
originating from an exactly linear function. Then the optimal regression design puts
all observations on the extreme points of the segment where observations can be
made.

However, a possibly more realistic version of this task is to fit the best straight
line to an approximately linear function. In either case, one would want to make
something like the expectation of the integrated mean square error as small as
possible. Of course, usually one does not know much about the small deviations
from linearity one might have to cope with (and does not care about them, so long
as they are small). Already Box and Draper (1959, p. 622) had recognized the crux
of the situation and had pointed out: “The optimal design in typical situations in
which both variance and bias occur is very nearly the same as would be obtained
if variance were ignored completely and the experiment designed so as to minimize
bias alone.”

In other words, the “naive” design, which distributes the observations evenly
over the accessible segment, in such a situation should be very nearly optimal,
since it minimizes the integrated squared bias of the fit. Apart from that, it has an
advantage over the optimal design since its redundancy allows to check the linearity
assumption.

These aspects have been made precise in a minimax sense by Huber (1975a).
The most surprising fact emerging from this study was: there is a range where the
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best linear fit

optimal design fit

true function

Fig 1. Optimal design fit (based on the theoretically optimal design) and best linear fit (minimizing
the integrated squared error), to a not-quite linear function. Observational errors are neglected in
this figure.

deviation from linearity is slight enough to stay below statistical detectability, yet
large enough so that the “naive” design will outperform the “optimal” design and
give a better linear approximation to the true function. Even though the effects are
much less dramatic than in Example 3, we evidently have run here into another
example of the Scapegoat Syndrome.

8.2. Regression Design and Breakdown

Example 9. In higher dimensions, generalizing the preceding example, an optimal
linear regression design would place an equal number of m observations onto each of
the (p+1) corners of a p-dimensional simplex. Technically, such a design is optimal,
but again, it lacks redundance.

For such a design the best possible breakdown point is

(9) ε∗ = dm/2e /(m(p+ 1)) ≈ 1/(2(p+ 1)).

This breakdown point is attained by the L1-estimate (calculate the median at each
corner). The so-called high-breakdown point LMS- and S-estimates cannot do any
better.

But already an arbitrarily small jittering of the design points will bring them
into general position. Then the breakdown point of LMS and S is close to 1/2.
How can this happen?

On closer inspection we see that the high breakdown point of LMS- and S-
estimates is achieved by extrapolation: at each corner, you put more faith in the
value extrapolated from the mp observations clustering near the far-away other p
corners, than in the m local values. The fitted hyperplane thus not only loses effi-
ciency, but becomes sensitive to small errors affecting a majority of the observations,
such as rounding.

The conclusion is that high breakdown point regression is not necessarily robust.
We have a clear case of the Souped-up Car Syndrome: both extremes, optimal
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design and optimal breakdown point, lead to estimates with undesirable properties,
and a compromise is called for. A quantitative, design-dependent theory of robust
regression would seem to be needed. The customary assumption underlying all high
breakdown point regression theories in the published literature, namely that the
regression carrier is a random sample from a suitable multi-dimensional continuous
distribution, in my opinion is much too narrowly conceived.

9. Bayesian Statistics

Example 10. What is Bayesian robustness? Bayesian statistcs has a built-in prob-
lem with the Scapegoat Syndrome, that is, with over-reliance on the model; this
problem becomes acute in connection with robustness. By definition, Bayes proce-
dures are optimal for the chosen model, consisting of a prior α(θ) and a family of
conditional densities f(x, θ). Instability, and conversely robustness, thus are prop-
erties of the model. This was emphasized in 1978 by George Box in an illuminating,
facetious but profound oral interchange with John Tukey at an ARO meeting on
Robustness in Statistics (Launer and Wilkinson, 1979). Box maintained that, after
all, he had invented the term (see Box 1953), and that he could define it as he
pleased, and that in his opinion robustness was to be achieved by choosing a proper
model, not by tampering with the data (by trimming or Winsorizing) as Tukey was
wont to do. He did not elaborate on how to choose such a model.

The philosophical problem of Bayesian statistics is that it is congenitally unable
to separate the model, the underlying true situation, and the statistical procedure.
It acts as if the model were exactly true, and it then uses the corresponding optimal
procedure. A fundamentalist Bayesian, for whom probabilities exist only in the
mind, will not be able to see that there is a problem of the Scapegoat type; it takes
a pragmatist like George Box to be aware of it.

I shall now attempt to sketch a way around this Bayesian Scapegoat Sydrome.
The central question is: what is a robust model? Ad hoc parametric supermodels,
which sometimes are advertised as the Bayesian approach to robustness, do not
guarantee robustness. There are no reliable guidelines to select such models, and
the resulting procedures may suffer from instabilities.

If we proceed pragmatically, then, as a minimum requirement, the statistical
conclusions from the model ought to be insensitive to occasional outliers. Sensitivity
studies à la Berger, that is: admit that the specifications are inaccurate and find the
range of implied conclusions (see Wolpert 2004, p. 212), may reveal the presence
of outliers: if there are outliers, small changes in the tails of the model f(x, θ)
can produce large effects. Also, they may reveal conflicts between the prior and
the observational evidence: if the observational evidence points to a θ far from
the center of the prior, small changes in the tails of the latter can produce large
effects. Thus, if a sensitivity analysis shows that the range of implied conclusions
is narrow, any model in the uncertainty range will do. If not, we better choose a
robust model. But then, why not choose a robust model right away? Unfortunately,
sensitivity studies do not help us find a robust model.

The following is a proposal for an informal portmanteau definition of robustness,
covering both Bayesian and non-Bayesian statistics:

Uncertain parts of the evidence should never have overriding influence on the
final conclusions.

This is supposed to apply not only to questionable data (outliers), but also to
uncertainties in the model densities f(x, θ) and to uncertainties in the prior α(θ),
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and even to vagueness in the specification of the target loss function.
How to implement such a loose definition? The first two of the above four re-

quirements are interconnected and tricky to separate: insensitivity to dubious data
features (gross errors), and insensitivity to uncertain model specifications. I claim
that the following implementation should do the job for both aspects: Choose a
model f(x, θ) within the uncertainty range, such that the conclusions are insensi-
tive to gross errors. This has to be made precise.

The mode of the posterior density solves

(10) α′(θ)/α(θ) +
∑

f ′(xi, θ)/f(xi, θ) = 0,

where the prime denotes the derivative with respect to θ. For a flat prior, the mode
of the posterior coincides with the maximum likelihood estimate.

As Freedman (1963) has expressed it, there is a “striking and mysterious fact”,
namely that asymptotically, Bayes and M.L. estimates behave similarly: they not
only have the same asymptotic distribution, but if the true underlying distribution
belongs to the parametric family, the Bayesian posterior distribution, centered at
the M.L. estimate and scaled by n−1/2, is asymptotically normal and coincides
with the asymptotic distribution of the M.L. estimate, centered at the true θ and
also scaled by n−1/2. See also LeCam (1957); the result apparently goes back to
Bernstein and von Mises.

Thus, if we are willing to adopt the infinitesimal approach via gross error sen-
sitivity (see Example 6), asymptotic robustness ideas should carry over from non-
Bayesian M -estimates. Though, Hampel’s approach through gross error sensitivity
does not apply without some caveats, since it does not automatically lead to ψ-
functions that are logarithmic derivatives of probability densities (which is a nec-
essary side condition in the Bayes context — another example of a straitjacket).
Finite ε-neighborhoods need somewhat more work. Assume that the M - and Bayes
estimates both are calculated on the basis of the least favorable density (instead
of the unknown true underlying distribution, which is supposed to lie anywhere in
the given ε-neighborhood). Then, the M - and Bayes estimates still have the same
asymptotically normal distribution, but the equivalence with the asymptotic pos-
terior is lost. Though, in the one-dimensional location case it can be shown that
the asymptotic variance of the posterior then lies between the asymptotic variance
of the M -estimate and the upper bound for that variance obtained from the least
favorable distribution (to be published in the forthcoming 2nd edition of my Robust
Statistics). — As an amusing aside on the subject of pitfalls, I might mention that
the usual applications in econometrics of one the formulas relevant in this context
(the so-called “sandwich formula”) go so far beyond its original intention that they
deserve an honorable mention in the category of overly optimistic heuristics, see
Freedman (2006).

In short, the heuristic conclusion, deriving from hindsight based on non-Bayesian
robustness, thus is that f ′/f ought to be bounded. In (10) the prior acts very much
like a distinguished additional observation. Thus, in analogous fashion, also α′/α
ought to be bounded. In both cases, the bounds should be chosen as small as feasible.
Ordinarily, these bounds are minimized by the least informative distributions, with
Fisher information used as measure of information. Thus, a possible optimization
goal can be expressed:

A most robust Bayesian model can be found by choosing α and f to be least
informative within their respective (objective or subjective) uncertainty ranges.
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For all practical purposes this is the same recipe as the one applying to the non-
Bayesian case. But like there, it is difficult to implement once one wants to go
beyond the location case. And if it is adopted overly literally, we might even get
trapped in one the pitfalls of optimality.

10. Concluding Remarks

In the 1970s statistical theory clearly had been in the third, consolidation or
“squeezing” phase of the development cycle. At present, we seem to have entered a
new cycle and seem to be in the middle of a new “groping” phase, trying to get con-
ceptual and theoretical handles on challenging problems involving extremely large
and complexly structured data sets.

I hope that this time the laxness of the groping phase will be eliminated in time,
and will not be cemented into place during the consolidation phase. Perhaps it may
help to keep in mind the following aphorisms on optimality and optimization. They
are not new, they are re-iterating sentiments already expressed by Tukey in 1962.
Those sentiments subsequently had been studiously ignored by most statisticians.
I hope that this time they will fare better.

• Optimality results are important: they show what can (and what cannot) be
achieved under ideal conditions, and in particular they show whether a given
procedure still has worthwhile potential for improvement.

• Optimal procedures as a rule are too dangerous to be used in untempered
form.

• Beware of sloppy asymptotics.
• Never confuse the idealized model with the truth.
• Do not optimize one aspect to the detriment of others.
• There are no clear-cut rules on how the tempering of optimal procedures

should be done — compromises are involved, and one must rely on human
judgment. But if one insists on a mathematical approach, minimizing Fisher
information within a subjective uncertainty range often will do a good job,
both for Bayesians and non-Bayesians.
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Proportional Hazards Regression with

Unknown Link Function

Wei Wang1 , Jane-Ling Wang2 and Qihua Wang3

Harvard Medical School and Brigham and Women’s Hospital; University of California, Davis;
Chinese Academy of Science and The University of Hong Kong

Abstract: Proportional hazards regression model assumes that the covariates
affect the hazard function through a link function and an index which is a linear
function of the covariates. Traditional approaches, such as the Cox proportional
hazards model, focus on estimating the unknown index by assuming a known
link function between the log-hazard function and covariates. A linear link
function is often employed for convenience without any validation. This paper
provides an approach to estimate the link function, which can then be used
to guide the choice of a proper parametric link function. This is accomplished
through a two-step algorithm to estimate the link function and the effects of
the covariates iteratively without involving the baseline hazard estimate. The
link function is estimated by a smoothing method based on a local version
of partial likelihood, and the index function is then estimated using a full
version of partial likelihood. Asymptotic properties of the non-parametric link
function estimate are derived, which facilitates model checking of the adequacy
of the Cox Proportional hazards model. The approach is illustrated through a
survival data and simulations.
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1. Introduction

Proportional hazards regression model has played a pivotal role in survival analysis
since Cox proposed it in 1972. Let T represent survival time and Z its associate
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covariate vector. Under the proportional hazards model, the hazard function for T ,
given a particular value z for the covariate Z, is defined as

(1) λ{t | z} = λ0(t) exp
{
ψ(β0

T z)
}
,

where λ0(t) is an unknown baseline hazard function corresponding to z = (0, · · · , 0),
and ψ(·) is called the link function with ψ(0) = 0. With fully specified link function
ψ, the partial likelihood method was introduced in [4, 5] to estimate the regression
parameters, β0, with the option to accommodate censored data. The most common
choice for ψ is the identity function, which corresponds to the time-honored Cox
model. In reality the link function is unknown and needs to be estimated. This is
especially useful to validate a preferred choice, as an erroneous link function could
dramatically distort risk assessment or interpretation of odds ratios. When the link
function is known, such as in the Cox model, model (1) is a special case of the
transformation model first proposed in [7] and subsequently studied in [6], [3] etc.
Our goal in this paper is to consider model (1) with an unknown link function.
This problem was first studied in an unpublished Ph.D. thesis [19]. However, the
procedure there was less efficient and we propose an improved estimate, studying
its asymptotic properties.

Previous work focuses on the special case when the covariate is one-dimensional,
or equivalently when β is known in (1). Under this special one-dimensional case, a
local partial likelihood technique in [18] and a variation of the local scoring algo-
rithm of [12] can be used to estimate the unknown link function in (1). Gentleman
and Crowley [10] proposed a local version of the full likelihood instead of partial
likelihood by alternating between estimating the baseline hazard function and es-
timating the covariate effects. The local likelihood methods in these papers were
based on data whose covariate values fall in a neighborhood of the targeted location.
Fan, Gijbels and King [8] used instead a local polynomial method to approximate
the local partial likelihood, and derived rigorous asymptotic results for their ap-
proach. Simulation studies there showed that the local partial likelihood method is
comparable to the local full likelihood method in [10]. Two spline approaches have
also been considered, with smoothing splines resulting from a penalized partial
likelihood in O’Sullivan [16] and regression splines from [17].

While the aforementioned approaches can be easily extended to q-dimensional
covariates by estimating a multivariate unknown link function ψ(z1, · · · , zq), such
nonparametric approaches are subject to the curse of dimensionality and may not be
suitable for q ≥ 3. Moreover, the resulting model would be different from model (1),
which has the attractive dimension reduction feature that the covariate information
is succinctly summarized in a single index and is a nonparametric extension of the
Cox proportional hazards model. Model (1) could also be used as an exploratory
tool to guide the choice of a suitable parametric link function.

A two-step iterative algorithm to estimate the link function and the covariate
effects is proposed in Section 2. In the first step, an initial estimate of the regression
parameter β is plugged in model (1) so that the link function can be estimated by a
smoothing method based on a local version of partial likelihood ([4, 5]). The second
step involves updating the regression parameters using the full partial likelihood
with the estimated link function in step 1 inserted. These two steps will be iterated
until the algorithm converges. Asymptotic results for the link estimators are stated
in Section 2. In particular, Theorem 2 provides the building blocks to check the
link function and inference for the individual risk, ψ(βT z). It also reveals that the
nonparametric estimate of the link function is as efficient as the one for model
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(1) but with a known regression parameter β. Thus, there is no efficiency loss to
estimate the link function even if β is unknown in our setting. This is also reflected in
the simulation studies in Section 3. The approach in Section 2 is further illustrated
in Section 4 through a data set from the Worcester Heart Attach Study. All the
proofs of the main results are relegated to an appendix.

We remark here that [15] also studied model (1) with a different approach. They
assumed that the link function is in a finite dimensional subspace spanned by poly-
nomial spline bases functions and the dimension of this subspace is known. This
leads to a flexible parametric model where the spline coefficients corresponding to
the link functions and β can then be estimated directly through traditional par-
tial likelihood approaches. While this has the benefit of simplicity as everything
is in the parametric framework, it tends to underestimate the standard errors of
the estimates. Two sources of bias arise, one derives from the fact that in reality
the number of spline bases depends on the data and is a function of the sample
size, so the standard errors are underestimated by the simple parametric inference.
In addition, the link estimation might be biased, as in theory an infinite number
of spine bases might be required to span the unknown link function. These biases
could significantly affect the asymptotic results. In contrast, our approach provides
correct asymptotic theory and efficient estimation of the link function.

2. Estimation Procedure and Main Results

Since there are three different unknown parameters, λ0(·), ψ(·) and β in model
(1), we need to impose some conditions to ensure identifiability. To identify λ0, it
suffices to set ψ(v) = 0 at some point v, a common choice is v = 0. Since only
the direction of β is identifiable if ψ is unknown, we assume that ‖β‖=1 (here ‖ · ‖
represents the Euclidean norm) and that the sign of the first component of β is
positive. As for the sampling plan, we assume an independent censoring scheme,
in which the survival time T and censoring time C are conditionally independent,
given the covariate vector Z. Let X = min(T,C) be the observed event-time and
∆ = I{T ≤ C} be the censoring indicator. The data {Xi, Zi, δi} is an i.i.d. sample
of {X,Z,∆}. We use the notation ti < · · · < tN to denote the N distinctive ordered
failure times, and (j) to denote the label of the item failing at time tj . The risk set
at time tj is denoted by Rj = {i : Xi ≥ tj}.

For a fixed parametric value β, one can estimate the link function ψ(·) by any
smoothing method, such as those cited in Section 1 when β is assumed known. We
adopt the local partial likelihood approach in [8] and assume, for a given point v,
that the p-th order derivative of ψ(v) at point v exists. A Taylor expansion for βTZ
in a neighborhood of v then yields,

(2)
ψ(βTZ) ≈ ψ(v) + ψ

′
(v)(βTZ − v) + · · ·+ ψ(p)(v)

p!
(βTZ − v)P

= ψ(v) + (βTZ)T γ(v),

where γ(v) = {ψ′(v), · · · , ψ(p)(v)/p!}T is the p−dimensional vector associated with
the derivatives of ψ and βTZ = {βTZ − v, · · · , (βTZ − v)p}T .

Let K be a kernel function, h be a bandwidth, and define Kh(u) = h−1K(u/h).
Applying kernel weights to the logarithm of the global partial likelihood

N∑

j=1

ψ(βTZ(j))− log

{∑

i∈Rj
exp
{
ψ(βTZ(j))

}}
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and replacing ψ(βT z) by the local approximation in (2), we arrive at (similarly to
[8]) the local version of the log partial likelihood:

(3)

N∑

j=1

Kh

(
βTZ(j) − v

)
[
(
βTZ(j)

)T
γ(v)

− log
{∑

i∈Rj
exp
{(
βTZi

)T
γ(v)

}
Kh{βTZi − v}

}]
,

where βTZi and βTZ(j) are defined as βTZ with Z replaced by Zi and Z(j) respec-
tively. It can be shown that the local log partial likelihood in (3) is strictly concave
with respect to γ(·), so for a fixed β, it has a unique maximizer with respect to
γ. Let γ̂(v) be the local partial likelihood estimate with γ̂k(v) denoting its k-th
component, then ψ(k)(v) can be estimated by ψ̂(k)(v) = k! γ̂k(v), for k = 1, · · · , p.
In principle, one could maximize (3) with respect to both β and γ, and this corre-
sponds to maximizing the real local log likelihood. But we choose to maximize (3)
only with respect to γ for a fixed estimated value of β, and this corresponds to max-
imizing a pseudo local log likelihood as the true β in (3) is replaced by an estimate.
There are two reasons for our choice. First (3) is concave in γ, but not necessarily
in β. Second, maximizing with respect to both parameters is probably not worth
the additional computational cost, as the local likelihood procedures mainly serve
as a smoother and the choice of the smoother is usually not crucial.

To estimate the link function, we use

ψ̂(v) =
∫ v

0

ψ̂′(w)dw,

where ψ̂′(v) is the first component of γ̂(v) at the last iteration step. There are
several ways to approximate this integral, such as the trapezoidal rule or Gaus-
sian quadrature. For computational simplicity, we apply the trapezoidal rule in the
simulation studies, as suggested in [18], and this appears to be satisfactory.

2.1. Algorithm and Computational Issues

The procedure described in the previous subsection requires a certain choice of β
in equation (2). This can be done either independently or iteratively as once an
estimate of ψ is obtained, one can then estimate β through the global partial likeli-
hood. An iterative algorithm, as shown below, can be established by alternatingly
updating the estimates for β and ψ. Such an iteration procedure may improve the
link estimate as a better estimate of β will lead to a better estimate of ψ.
Step 1. (a) Assign a nonzero initial value to β, and call it β̂.

(b) For a given v, plug β̂ into the pseudo log local partial likelihood and maximize

N∑

j=1

Kh

{
β̂TZ(j) − v

}
·
[
[β̂TZ(j)]T γ(v)

− log
{∑

i∈Rj
exp{[β̂TZi]T γ(v)}Kh

{
β̂TZi − v

}}]

with respect to γ(v) to get the estimate γ̂(v).
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(c) Obtain the values of γ̂(v), for v = β̂TZi, i = 1, · · · , n.
(d) Apply the trapezoidal rule to obtain {ψ̂(β̂TZi) : i = 1, · · · , n}.

Step 2. Plug ψ̂(·) into the log (global) partial likelihood

lG(β, ψ̂) =
N∑

j=1

[
ψ̂(βTZ(j))− log

{∑

i∈Rj
exp
{
ψ̂(βTZi)

}}]
,

and maximize it with respect to β to update the estimate β̂. We use the angle
between two estimated β̂ at two consecutive iterations as the convergence criterion.

Remark 1. The Newton-Raphson method is used to find the estimators in Step
1 and 2. The initial value of β can be set in different ways but cannot be zero as
a nonzero value is needed in step 1 to estimate the link function. However, this
restriction does not exclude the final β-estimate to be zero or close to zero. A
simple choice is to fit the usual Cox model and use this estimator in the first step.
To accelerate the computation, one can also use alternative estimates as described
below.

Remark 2. It is possible to accelerate the computation by using a
√
n-consistent

initial estimator, as Theorems 1 and 2 below imply that no iteration is required for
the link estimate and that it will converge efficiently at the usual nonparametric
rate. Namely, the link function can be estimated with the same efficiency as when
β is known. In practice, we find that one iteration helps to improve the numerical
performance but further iteration is usually not necessary. There are two choices
for a

√
n-consistent initial estimator, one is the estimator in [2] that extends the

sliced inverse regression (SIR) approach to censored data. Specifically, this approach
requires a certain design condition as listed in (2.3) there but has the advantage
that it leads to a

√
n-consistent estimator for β without the need to estimate the

link function. Another initial estimate which does not rely on the design conditions
(2.3) in [2] is provided in a Ph. D. thesis [19]. Specifically, this involves replacing the
ψ function in step 2 above by its local version (2), which leads to the cancelation of
the term ψ and results in a version of log (global) partial likelihood that involves
only the derivative γ(v) of ψ but not ψ itself. Thus, Step 2 above is replaced by

Step 2*. Maximize the following approximate log (global) partial likelihood with
respect to β:

N∑

j=1

[
[βTZ(j)]T γ̂{β̂TZ(j)} − log

{∑

i∈Rj
exp
(

[βTZi]T γ̂{β̂TZi}
)}]

.

This approximation may result in some efficiency loss, but has computational
advantages over the estimate in Step 2, since we do not need to estimate ψ(v)
and thus can skip Step 1(d). The resulting estimate for β was shown in [19] to be√
n-consistent, consequently an ideal choice as the initial estimate for β.
Remark 3. In step 1, the local log partial likelihood in (3) is replaced by a

pseudo log partial likelihood with β replaced by β̂. As this β̂ approaches β, the
link estimate resulting from maximizing the pseudo log partial likelihood can be
expected to approach the true link function at the usual nonparametric rate. This
is because the parametric estimate β̂ converge to its target at the

√
n–rate, which

is faster than the nonparametric link estimate. A rigorous proof is provided in
Theorem 1 and Theorem 2.
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Remark 4. For large sample sizes, it is unnecessary to estimate the link function
at each data point. An alternative way is to estimate the link function at equal-
distance grid points, then use interpolation or smoothing methods to obtain the
estimated value at each data point. Our simulation results show that this short-cut
is computationally economical while retaining similar accuracy.

2.2. Main Results

Let f(·) be the probability density of βTZ, for a given v, let P (t | v) = P (X ≥ t |
βTZ = v), Y (t) = I{X ≥ t}, H = diag{h, · · · , hp}T and u = {u, · · · , up}T .

Theorem 1. Under conditions (C1)-(C5) in the Appendix, for any
√
n consistent

estimator β̂ of the true parameter β0, let γ̂(·) be the corresponding estimator for
the derivatives γ0(·) of the true link ψ and ψ̂(v) =

∫ v
0
ψ̂′(w)dw, where ψ̂′(·) is the

first component of γ̂(·). If h→ 0, nh/ log n→∞, nh4 →∞ then

sup
v
|γ̂(v)− γ0(v)| →p 0,

and
sup
z
|ψ̂(β̂T z)− ψ(β0

T z)| →p 0

Theorem 2. Under the conditions in Theorem 1 and for bounded nh2p+3,

(a)
√
nh

{
H(γ̂(v)− γ0(v))− ψ(p+1)(v)

(p+ 1)!
A−1bhp+1

}

→D N

{
0,
σ2(v)
f(v)

A−1DA−1

}
.

Furthermore, we have

(b)
√
nh

{
H(γ̂(β̂T z)− γ0(β0

T z))− ψ(p+1)(β0
T z)

(p+ 1)!
A−1bhp+1

}

→D N

{
0,
σ2(β0

T z)
f(β0

T z)
A−1DA−1

}
,

where A =
∫

uuTK(u)du − ν1ν
T
1 , b =

∫
up+1(u − ν1)K(u)du, D =

∫
K2(u)(u −

ν1)⊗2du, ν1 =
∫

uK(u)du, and σ2(v) = E{δ|βTZ = v}−1.

Theorem 1 establishes the uniform consistency of the local partial likelihood
estimator of γ0 and Theorem 2 provides the joint asymptotic normality of the
derivative estimators. The limiting distribution of γ̂ is identical to the one in [8],
where β is assumed to be known. Thus, there is no efficiency loss as long as β can
be estimated at the usual

√
n-rate.

2.3. Model Checking and Selection

While an estimated link function is of interest to correctly reflect the risk associated
with a covariate, a parametric link function is often preferable to a nonparametric
one to lend a parsimonious model with more interpretable results. Thus, a main
incentive to estimate the link function could be for exploratory model selection to
facilitate the choice of a proper parametric link function in the proportional hazards
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model (1). If so, the β estimate in Step 2 only aids in the link estimation and need
not be the end product. Once a suitable link function has been selected, Theorem
2 can be used for model checking. For instance, to check the identity link function
under the Cox model, one can test H0: ψ′(v) = 1. Since the first component of γ(v)
is ψ′(v), a local polynomial of order p = 2 is usually employed to estimate such a
derivative, and the resulting asymptotic distribution of the corresponding estimate
is given below.

Corollary 1. Under the condition of Theorem 2, and with p = 2 there, we have

√
nh3

(
ψ̂′(v)− ψ′(v)− 1

6
ψ(3)(v)h2

∫
u4K(u)du∫
u2K(u)du

)
→D N

(
0,
σ2(v)

∫
u2K2(u)du

f(v)
∫
u2K(u)du

)
.

Corollary 1 facilitates the construction of testing procedures and asymptotic
simultaneous confidence bands for the link function, but rigorous asymptotic theory
requires much further work and is not available yet. In principle, one could check
the appropriateness of the link function at all data points v that falls in the range
of βTZ. Since the true value of β is unknown, it is natural to replace it with an
estimate. However, one must bear in mind the precision of this estimate as well
as the low precision of ψ′(v) for v in the boundary region of β̂TZ. Here boundary
region is defined as within one bandwidth of the data range, where a smoothing
procedure is employed. Since the bandwidth h is usually of a higher order than
n−

1
2 , the anticipated rate of convergence for β̂, we recommend to restrict inference

on ψ′(v) for v that is in the interior and at least one bandwidth h away from either
boundary of the range of β̂.

Short of such a rigorous inference procedure for model checking, pointwise con-
fidence intervals have often been used as a substitute for exploratory purposes. In
the example in Section 4, we illustrate how to check the appropriateness of the Cox
model, i.e. identity link function, using pointwise confidence intervals developed
from Corollary 1. Readers should bear in mind that this is only an exploratory
data analysis tool rather than a formal inference procedure.

3. Simulation Studies

To see how the algorithm in Section 2 works for the proposed model, we conducted
simulation studies where a quadratic link function ψ(βTZ) = (βTZ)2 with β =
(1, 3)T and a constant baseline, λ0 = 0.005, were employed. The design for the
two-dimensional covariate, Z = (Z1, Z2)T is: Z1 ∼ U(−1, 1) and Z2 is a truncated
N(0, 1) with values in [−1, 1]. Parameters of β were chosen in such a way that the
simulation generates a reasonable signal to noise ratio (cf. Fig 1). If we take ε to
have the standard exponential distribution, exp(1), the resulting hazard function
will be λ0 exp{ψ(βTZ)}, and survival times from this model can be generated as
T = exp{ψ(−βTZ)}ε/λ0. Different uniform distributions were utilized to generate
three independent censoring times so that the censoring rates were 0%, and roughly
25% and 50%. The Epanechnikov kernel was adopted in the link estimation. Two
sample sizes, 200 and 50, were selected to see whether the methods are flexible for
moderate to small samples. For n = 200 we used 25 equal-distance grid points to
estimate the link function to save computational time as elucidated in Remark 4
of Section 2. Piece-wise spline interpolation was then used to get the link estimate
during each iteration of the algorithm.

Due to the complication from the identifiability problem, the link function can
only be identified up to a constant. Thus, ψ̂(v) and ψ̂(v) + c, for any constant
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Table 1
Comparison of different methods for estimating ψ(βTZ) = (βTZ)2, where β = (1, 3)T and

Z = (Z1, Z2)T with Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1) (truncated at [-1,1]), n=200. The numbers
before and after “/” are the means and standard deviations of d based on 100 simulations.

h∗ Optimal

Censoring † 0.1 0.2 0.3 0.4 MSE
No 1 3.152/0.181 3.152/0.181 3.152/0.181 3.152/0.181 9.970

4 0.191/0.114 0.191/0.114 0.191/0.114 0.191/0.114 0.049

2 1.234/2.554 0.439/0.142 0.843/0.150 1.417/0.151 0.213

3 1.210/3.522 0.490/0.144 0.907/0.168 1.476/0.168 0.261

25% 1 3.151/0.181 3.151/0.181 3.151/0.181 3.151/0.181 9.961
4 0.201/0.112 0.201/0.112 0.201/0.112 0.201/0.112 0.053

2 1.256/2.548 0.425/0.157 0.684/0.172 1.197/0.178 0.206

3 0.981/1.991 0.468/0.156 0.746/0.185 1.256/0.194 0.244

50% 1 3.149/0.181 3.149/0.181 3.149/0.181 3.149/0.181 9.947
4 0.210/0.117 0.210/0.117 0.210/0.117 0.210/0.117 0.056

2 1.361/2.529 0.525/0.215 0.535/0.161 0.729/0.210 0.322

3 1.236/2.138 0.536/0.201 0.571/0.169 0.808/0.226 0.327

† Method 1 is under identity link Method 2 is under unknown link
and unknown β. and true β.

Method 3 is under unknown link Method 4 is under quadratic link
and unknown β. and unknown β.

c, are considered to be equivalent procedures, and any measures of performance
would declare these two procedures identical. This points to selecting a measure
which measures the variation instead of the real difference. We adopt a measure
proposed in [10] which is the standard deviation of the differences between the fitted
values ψ̂(β̂TZ) and the true values ψ(βTZ) at all data points. More specifically,
this measure, denoted by d, is the standard deviation of the difference {ψ̂(β̂TZ)−
ψ(βTZ) : i = 1, · · · , n}. We report in Table 1 the average values for this measure
and its standard deviation based on 100 simulation runs.

Since at each estimating step, β̂ was updated and the range of β̂TZ might be
different, we used a bandwidth h∗, which took a certain portion of the range of
β̂TZ. For instance, an h∗ = 0.3 means that the actual bandwidth is 0.3 times the
range of the values of β̂TZ. Various bandwidths were explored, but we report only
the results for bandwidth h∗ varying from 0.1 to 0.4 (with 0.1 increment) times
the data range of βTZ at each iteration stage. Results for other bandwidths were
inferior and are not reported here.

Four procedures were compared and the results for n = 200 are shown in Table
1. Method 1 assumes that the link is identity (which is incorrect here) and the
regression coefficient estimate β̂ is therefore the Cox estimate based on the par-
tial likelihood estimate. The aim is to see the effect of erroneously assuming the
conventional Cox proportional hazards model. Method 2 assumes that β is known
and estimates the unknown link function as in [8]. Method 3 is the new procedure
where both the link function and regression coefficient β are estimated. Method 4
assumes that the true quadratic link function is known and the regression coefficient
estimate, β̂, is the partial likelihood estimate. The comparisons for the distance d
are reported in Table 1. The results of the best procedures together with the corre-
sponding optimal bandwidths are highlighted with boxes. It is not surprising that
the best results came from the procedures with true quadratic link function and
unknown β. Our estimators are close to those from method 2 ([8]) with known β,
while the estimators based on the identity link model have much larger d.

To demonstrate the effect of an erroneous link function on regression estimates,
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Table 2
Differences between the estimated β̂2 and the true β2 where β̂1 is set equal to the true β1,

ψ(βTZ) = (βTZ)2, where β = (1, 3)T and Z = (Z1, Z2)T with Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1)
(truncated at [-1,1]), n=200. The numbers before and after “/” are the biases and standard

deviations of the β̂2 based on 100 simulations.

h∗ Optimal Optimal
Censoring † 0.1 0.2 0.3 0.4 MSE‡ MSE§
No 1 5.344/50.847 5.344/50.847 5.344/50.847 5.344/50.847 2613.949 11742.108

4 -0.015/0.142 -0.015/0.142 -0.015/0.142 -0.015/0.142 0.021 0.703

3 0.023/0.276 -0.051/0.154 -0.096/0.158 -0.215/0.190 0.026 0.968

25% 1 -1.229/24.742 -1.229/24.742 -1.229/24.742 -1.229/24.742 613.684 11320.063
4 -0.013/0.154 -0.013/0.154 -0.013/0.154 -0.013/0.154 0.024 0.801

3 0.038/0.307 -0.055/0.170 -0.089/0.171 -0.162/0.195 0.032 1.144

50% 1 -1.472/6.486 -1.472/6.486 -1.472/6.486 -1.472/6.486 44.237 11266.339
4 -0.006/0.170 -0.006/0.170 -0.006/0.170 -0.006/0.170 0.029 0.968

3 0.055/0.371 -0.050/0.188 -0.075/0.181 -0.110/0.190 0.038 1.362

† Method 1 is under identity link and unknown β. Method 4 is under true link and unknown β.
Method 3 is under unknown link and unknown β.
‡ is the optimal MSE for β̂2 when β̂1 is set to be 1. § is the optimal MSE for the angles between β̂ and the true β.

we report in Table 2 the results of the various estimates for β. Since there is no
regression parameter estimate for method 2, only three procedures are compared
in Table 2. There are several ways to compare the regression estimates, one way
is to set the first component of β to the true value, then compare the difference
between β̂ and β based on the second component. Table 2 shows the results of
the difference between the true β2 and the estimate β̂2 for various procedures. The
best procedures for the profile estimator in method 3 are shown in boxes under the
optimal bandwidths. Another way to compare the different estimators is to calculate
the angles between these estimators and the true parameter. To save space only the
MSEs based on the optimal bandwidths are listed in the last column of Table 2 for
the angle measure (degrees). Based on both optimal MSE measures reported in the
last two columns of Table 2, the differences between the new profile estimators and
the true parameters are way smaller than those from the identity link model, and
reasonably close to those under the true link.

We can see that using the wrong link will lead to huge bias and MSE under all
censoring patterns. The average angles between the β estimates assuming identity
link and the true parameters are around 90◦, which suggests that the β estimates
with identity link are perpendicular to the true parameter space, indicating a total
inability to estimate the regression parameter. This is in addition to the problem
that the link function itself has been misspecified. Both underscore the importance
to check the shape of the link function at the beginning of data analysis.

Four typical simulated curves are shown in Fig 1. The procedure (method 4) with
known quadratic link function and unknown β performed the best. The procedure
(method 2) with known β and our procedure captured the shape of the true curve
well, but the procedure (method 1) based on the Cox model failed to capture the
shape of the link function. Results for n = 50 summarized in Table 3 are consistent
with the findings for n = 200 in Table 1.

4. Data Analysis

In this section, we illustrate the proposed model and estimation algorithm in Section
2 through the Worcester Heart Attack Study (WHAS) data. One of the goals of
this study is to identify factors associated with the survival rates following hospital
admission for acute myocardial infarction. The main data set has more than 11000

imsart-coll ver. 2008/08/29 file: Wang.tex date: March 25, 2009



Proportional Hazards Regression 55

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

0

5

10

15

20

L
in

k
 F

u
n

c
ti
o

n

Ture link and β
Simulated data
Identity link, Unknown β
Quadratic link, Unknown beta
Known β, Unknown link
Both unknown

−4 −3 −2 −1 0 1 2 3 4 5
−4

−2

0

2

4

6

8

10

12

14

16

L
in

k
 F

u
n

c
ti
o

n

Ture link and β
Simulated data
Identity link, Unknown β
Quadratic link, Unknown beta
Known β, Unknown link
Both unknown

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10

12

14

16

L
in

k
 F

u
n

c
ti
o

n

Ture link and β
Simulated data
Identity link, Unknown β
Quadratic link, Unknown beta
Known β, Unknown link
Both unknown

−4 −3 −2 −1 0 1 2 3 4
−4

−2

0

2

4

6

8

10

12

14

16

L
in

k
 F

u
n

c
ti
o

n

Ture link and β
Simulated data
Identity link, Unknown β
Quadratic link, Unknown beta
Known β, Unknown link
Both unknown

βTZ

Fig 1. Four typical simulated sets of data and estimated curves from the model ψ(βTZ) = (βTZ)2

with β = (1, 3)T , Z = (Z1, Z2)T where Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1) (truncated at [-1,1]),
25% censoring and h∗ = 0.2. The simulated data is indicated as black dots. The true curve ψ(·)
is indicated as a red solid line, and the estimated curves ψ̂(·) as a magenta dash line with identity
link and unknown β, as a black dash-dotted line with quadratic link and unknown β, as a green
dotted line with unknown link and true β, and as a blue dash-dotted line with both unknown link
and unknown β.

Table 3
Comparison of different methods for estimating ψ(βTZ) = (βTZ)2, where β = (1, 3)T and

Z = (Z1, Z2)T with Z1 ∼ U(−1, 1) and Z2 ∼ N(0, 1) (truncated at [-1,1]), n=50. The reported
quantities are the smallest MSEs under optimal bandwidths.

No Censoring 25% Censoring 50% Censoring
Method d Optimal h∗ d Optimal h∗ d Optimal h∗

Identity link and unknown β 9.199 - 9.168 - 9.102 -
Quadratic link and unknown β 0.184 - 0.203 - 0.295 -
Unknown link and true β 0.808 0.3 0.833 0.3 1.359 0.4
Unknown link and unknown β 0.945 0.4 1.286 0.4 1.423 0.4
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admissions, but we used only a random sample of 500 patients as listed in [14].
This data set is chosen because the proportionality assumption has been carefully
examined and is reasonably satisfied. Our goal here is to check the adequacy of the
identity link function in the Cox proportional hazards regression model.

There were more than 10 covariates in the data set. After detailed model selec-
tion procedure, Hosmer et al. [14] included 6 variables age (AGE), initial heart rate
(HR), initial diastolic blood pressure (DIASBP), body mass index (BMI), gender
(GENDER), congestive heart complications (CHF), and the interaction between
age and gender (AGEGENDER) in their model. After examining the linearity as-
sumption using fractional polynomials, they decided to apply a two-term fractional
polynomial model to the variable BMI. We thus begin with the univariate covariate
BMI.

We tried different bandwidths and found similar patterns of the estimated link
functions. In Fig 2 we report two of the results, which exhibit reasonable level of
smoothness. The estimated link function in Fig 2 suggests clear nonlinearity. We
then constructed a 95% point-wise approximated confidence interval of γ(v) (Fig 3)
to see whether it would cover the constant function 1. The results suggest that the
estimated link functions have some curvature and further investigation is needed.

WHAS data

−4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

v

ψ
(v

)

 

 

Cox estimate
h*=1/6
h*=1/10

Fig 2. The estimated link function, under two bandwidths, for the WHAS data with BMI as a
covariate.

Next we applied the proposed procedure to the multivariate model with all 7
covariates. We tried different bandwidths ranging from 1/10, 1/8, 1/7, 1/6, 1/5, 1/4
,1/3, to 1/2 of the single index range, and plotted the results of three bandwidths
in Fig 4. The estimated link function for h∗ = 1/4 appears oversmoothed but all
three estimates exhibit two bumps. The 95% point-wise approximated confidence
intervals for γ(v) as shown in Fig 5 also reveal curvature away from the constant
(= 1) horizontal line. Although it is arguable that the Cox model could be rejected
at a low level, the suitability of an identity link function seems questionable.
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Fig 3. The estimated confidence interval of γ at bandwidth h∗ = 1/6 for the WHAS data based
on BMI.
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Fig 4. The estimated link function for the WHAS data under three different bandwidths.

5. Conclusion and Future Research

The proposed estimating procedures for the extended proportional hazards regres-
sion model with unknown link function and multi-dimensional covariates seem to be
reliable for moderate to large sample sizes. Once the link function and the param-
eters of the index have been established, one can proceed to estimate the unknown

imsart-coll ver. 2008/08/29 file: Wang.tex date: March 25, 2009



58 W. Wang, J. Wang and Q. Wang

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

WHAS data

0 1 2 3 4 5 6 7
−4

−2

0

2

4

6

8

v

γ(
v)

h*=1/6

Fig 5. The estimated confidence interval of γ for the WHAS data at bandwidth h∗ = 1/6.

baseline hazard function in model (1) using a Breslow-type estimate ([1]).
The cost of a misspecified link function has been demonstrated through the

simulation studies in Section 3. As a consequence, the risk of an individual may
be misinterpreted. It is thus important to at least estimate the link function in the
initial model fitting stage as a model checking tool or guidance to a suitable class
of parametric link functions. A rigorous test of parametric link function will be a
worthwhile future project, as is the asymptotic theory for simultaneous inference
of the link function and regression parameters.

The choice of automatic smoothing parameters, the bandwidth h in this case,
is a challenging problem for proportional hazards model when a likelihood based
smoother, such as the local partial likelihood estimate, is employed in the link es-
timate. This is because the components of the partial likelihood are dependent,
hence the usual automatic bandwidth selection methods for linear models are not
applicable here. The usual least square cross-validation procedure in nonparametric
regressions also cannot be easily adapted to hazard based models such as the pro-
portional hazards model. An alternative criterion, less computational intensive than
cross-validation methods, was proposed in [18], based on a variation of the Akaike’s
information criterion for span selection, when the nearest neighborhood method
was used for smoothing. However, the interpretation of AIC is not clear here since
partial likelihood involves dependent components. The authors also acknowledged
that the asymptotic correctness of the AIC criterion has not been established. Thus,
automatic bandwidth choice remains an open question when the link function is be-
ing estimated. Meanwhile, we recommend to try several bandwidths and choose one
that yields a moderately smooth link function as we did for the WHAS data. This
subjective choice based on the visual degree of smoothness is commonly adopted
as an ad hoc tool.

While this paper deals with time-independent covariates, it would be desirable to
extend model (1) to time-dependent covariates as well. One complication is that the
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entire history of the covariate process would be required or some kind of imputation
needs to be performed to get even an initial estimate of β. Preliminary results were
reported in [20] by imputing the covariate process through a functional principal
components approach, and then proceeding with the estimation of the survival
components at the second stage. Such a two-stage procedure is prone to bias as is
well known in the joint modelling literature. Further investigations to correct the
bias would be desirable, and joint modelling the longitudinal and survival process
offers some hope if one can resolve the additional complication of an unknown link
function. This is yet another worthwhile project to pursue in the future.
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Appendix

Let f(·) be the probability density of βTZ, for a given v, let P (t | v) = P (X ≥
t | βTZ = v), Λ(t, v) =

∫ t
0
P (u | v)λ0(u)du, Y (t) = I{X ≥ t}, Yi(t) = I{Xi ≥ t},

H = diag{h, · · · , hp}T and u = {u, · · · , up}.
We begin with some regularity conditions needed for the results.
(C1 ) K ≥ 0 is a bounded density with compact support, and it has bounded

first and second derivative.
(C2 ) ψ(·) has a continuous (p+ 1)th derivative around v.
(C3 ) The density f(·) of βTZ is continuous at point v and infw f(w) > 0.
(C4 ) The conditional probability P (t | ·) is equicontinuous at v.
(C5 )

∫ τ
0
λ0(u)du <∞.

Denote
s0(β, ψ, u) = E

[
Y (u) exp{ψ(βTZ)}

]
,

s1(β, ψ, u) = E
[
Y (u) exp{ψ(βTZ)}ψ′(βTZ)Z

]
,

s2(β, ψ, u) = E
[
Y (u) exp{ψ(βTZ)}

{
ψ′′(βTZ) + [ψ′(βTZ)]2

}
ZZT

]
,

s∗2(β, ψ, u) = E
[
Y (u) exp{ψ(βTZ)}[ψ′(βTZ)]2ZZT

]
.

(C6 ) The functions sr, r = 0, 1,and 2, and s∗2 are bounded and s0 is bounded
away from 0 on B × [0, τ ]; the family of functions sr(·, ψ, u) and s∗2(·, ψ, u) is an
equicontinuous family at β0.

The following lemma is used repeatedly in the later proofs. The proof will be
omitted and can be found in [19].

Lemma 1. Let cn(β0, t) = n−1
∑n
i=1 Yi(t)g(β0

TZi)Kh(β0
TZi − v) and c(t) =

f(v)g(v)P (t | v)
∫
K(u)du, Under conditions (C1) and (C4), if g(·) is continuous

at the point v, then
sup

0≤t≤τ
|cn(β0, t)− c(t)| →P 0,

provided that h→ 0, nh/ log n→∞, 0 < τ ≤ +∞.
If furthermore, β̂ is a

√
n-consistent estimate of β0 and nh4 →∞, then

sup
0≤t≤τ

|cn(β̂, t)− c(t)| →P 0.

Proof of Theorem 1

Proof. For notation simplicity, we will use γ to represent γ(v) and γ0 for γ0(v).
The log local partial likelihood function at point v is given as

l{β, γ, v} =
1
n

N∑

j=1

Kh(βTZ(j) − v)

[[
(βTZ(j))T γ

]
− log

{∑

i∈Rj
exp{(βTZi)T γ}Kh(βTZi − v)

}]
.

Using counting process notation N(t) = I{X ≤ t, δ = 1} and Ni(t) = I{Xi ≤
t, δi = 1}, under the independent censoring,

Mi(t) = Ni(t)−
∫ t

0

Yi(u) exp{ψ(β0
TZi)}λ0(u)du,

is a martingale with respect to the filtration Ft = σ{N(u), I{X≤u,δ=0} : 0 ≤ u ≤ t}.
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The empirical counterpart of l{β, γ, v} up to time t is

ln(β, γ, t, v) =
∫ t

0

1
n

n∑

i=1

Kh(βTZi − v)
[[

(βTZi)T γ
]

− log
{ n∑

i

Yi(u) exp{(βTZi)T γ}Kh(βTZi − v)
}]
dNi(u).

Denote Sh,0(β, γ, u, v) = 1
n

∑n
i=1Kh(βTZi − v)Yi(u) exp{(βTZi)T γ}.

Let β̂ be a
√
n−consistent estimate of the true parameter β0, and γ̂ be the

corresponding estimate of the true γ0, we can write

ln(β̂, γ, τ, v)− ln(β0, γ0, τ, v)

=
∫ τ

0

1
n

n∑

i=1

Kh(β0
TZi − v)

×
[[

(βT0 Zi)T γ − (βT0 Zi)T γ0

]
− log

Sh,0(β0, γ, u, v)
Sh,0(β0, γ0, u, v)

]
dMi(u)

+
∫ τ

0

1
n

n∑

i=1

Kh(β̂TZi − v)
[[

(β̂TZi)T γ − (βT0 Zi)T γ
]
− log

Sh,0(β̂, γ, u, v)
Sh,0(β0, γ, u, v)

]
dMi(u)

+
∫ τ

0

1
n

n∑

i=1

(
Kh(β̂TZi − v)−Kh(β0

TZi − v)
)

×
[
(βT0 Zi)T γ − logSh,0(β0, γ, u, v)

]
dMi(u)

+
∫ τ

0

1
n

n∑

i=1

Kh(β0
TZi − v)

[[
(βT0 Zi)T γ − (βT0 Zi)T γ0

]
− log

Sh,0(β0, γ, u, v)
Sh,0(β0, γ0, u, v)

]

× Yi(u) exp{ψ(β0
TZi)}λ0(u)du

+
∫ τ

0

1
n

n∑

i=1

Kh(β̂TZi − v)
[[

(β̂TZi)T γ − (βT0 Zi)T γ
]
− log

Sh,0(β̂, γ, u, v)
Sh,0(β0, γ, u, v)

]

× Yi(u) exp{ψ(β0
TZi)}λ0(u)du

+
∫ τ

0

1
n

n∑

i=1

(
Kh(β̂TZi − v)−Kh(β0

TZi − v)
)[

(βT0 Zi)T γ − logSh,0(β0, γ, u, v)
]

≡Xn(β0, γ, τ, v) + I + II +An(β0, γ, τ, v) + III + IV.

Under the regularity conditions and from Lemma 1, it can be shown that
(1) Xn(β0, γ, τ, v) is a locally square integrable martingale with the predictable

variation process

〈Xn(β0, γ, τ, v), Xn(β0, γ, τ, v)〉

=
∫ τ

0

1
n2

n∑

i=1

K2
h(β0

TZi − v)
[
(βT0 Zi)T (γ − γ0)− log

Sh,0(β0, γ, u, v)
Sh,0(β0, γ0, u, v)

]2

× Yi(u) exp{ψ(β0
TZi)}λ0(u)du

=Op(
1
nh

).
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(2) An(β0, γ, τ, v)→p

f(v) exp{ψ(v)}Λ(τ, v)

×
[
(
∫

uK(u)du)TH(γ − γ0)− log{
∫

exp{uTH(γ − γ0)}K(u)du}
]

+ op(1)

≡ A(β0, γ, τ, v) + op(1),

(3) I = Op( 1
nh ), II = Op( 1

nh2 ), III = Op( 1√
nh2 ), and IV = Op( 1√

nh4 ).
This means Xn(β0, γ, τ, v), I, II, III and IV converge to zero at a faster rate than

An(β0, γ, τ, v). By Lemma 8.2.1(2) in [9], ln(β̂, γ, τ, v)− ln(β0, γ0, τ, v) has the same
limiting distribution as An(β0, γ, τ, v). Thus, we have

(4) ln(β̂, γ, τ, v)− ln(β0, γ0, τ, v)→p A(β0, γ, τ, v).

It is obvious that A(β0, γ, τ, v) is strictly concave, with a maximum at γ = γ0.
Hence, the right-hand side of (4) is maximized at γ = γ0. The left-hand side of
(4) is maximized at γ = γ̂, since γ̂ maximizes ln(β̂, γ, τ, v). Therefore, supv

∣∣γ̂(v)−
γ0(v)

∣∣→p 0.
By Dominated Convergence Theorem, we have

(5) sup
v

∣∣ψ̂(v)− ψ(v)
∣∣→p 0.

This implies

sup
z

∣∣ψ̂(β̂T z)− ψ(β0
T z)
∣∣ ≤ sup

z

∣∣ψ̂(β̂T z)− ψ(β̂T z)
∣∣+ sup

z

∣∣ψ(β̂T z)− ψ(β0
T z)
∣∣→p 0,

where the second term converges to zero by continuity of ψ and
√
n-consistency of

β̂. Theorem 1 is thus proved.

Proof of Theorem 2

Proof. Let η = Hγ, we can write the log local partial likelihood function in terms
of β and η

ln(β, η, τ, v) =
∫ τ

0

1
n

n∑

i=1

Kh(βTZi − v)
[
(βTZi)TH−1η

− log
{ n∑

i

Yi(u) exp{(βTZi)TH−1η}Kh(βTZi − v)
}]
dNi(u).

Accordingly let Sh,0(β, η, u, v) = 1
n

∑n
i=1Kh(βTZi−v)Yi(u) exp{(βTZi)TH−1η},

and Sh,1(β, η, u, v) = 1
n

∑n
i=1Kh(βTZi− v)Yi(u) exp{(βTZi)TH−1η}(βTZi)TH−1,

and for a
√
n-consistent estimate β̂ of β0, Lemma 1 implies

sup
0≤u<τ

∣∣∣∣
Sh,1(β̂, η, u, v)

Sh,0(β̂, η, u, v)
− ν1

∣∣∣∣→p 0,

where ν1 =
∫

uK(u)du.
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The derivative of ln(β, η, τ, v) with respect to η evaluated at β̂ and η0 = Hγ0 is

l′n(β̂, η0, τ, v)

=
∫ τ

0

1
n

n∑

i=1

Kh(β̂TZi − v)
[
(β̂TZi)TH−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]
dNi(u)

=
∫ τ

0

1
n

n∑

i=1

Kh(β̂TZi − v)
[
(β̂TZi)TH−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]
dMi(u)

+
∫ τ

0

1
n

n∑

i=1

Kh(β̂TZi − v)
[
(β̂TZi)TH−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]

× Yi(u) exp{ψ(β0
TZi)}λ0(u)du

≡Un(β̂, η0, τ, v) +Bn(β̂, η0, τ, v).

The first term

Un(β̂, η0, τ, v)

=
∫ t

0

1
n

n∑

i=1

Kh(β̂TZi − v)
[
(β̂TZi)TH−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)

]
dMi(u)

=
∫ t

0

1
n

n∑

i=1

Kh(β0
TZi − v)

[
(βT0 Zi)TH−1 − Sh,1(β0, η0, u, v)

Sh,0(β0, η0, u, v)

]
dMi(u)

+
∫ t

0

1
n

n∑

i=1

(
Kh(β̂TZi − v)−Kh(β0

TZi − v)
)

×
[
(βT0 Zi)TH−1 − Sh,1(β0, η0, u, v)

Sh,0(β0, η0, u, v)

]
dMi(u)

+
∫ t

0

1
n

n∑

i=1

Kh(β̂TZi − v)

×
[
(β̂TZi − βT0 Zi)TH−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)
− Sh,1(β0, η0, u, v)
Sh,0(β0, η0, u, v)

]
dMi(u)

≡Un(β0, η0, τ, v) + V + V I.

It is clear that
√
nhUn(β0, η0, t, v) is a martingale with predictable variation

〈
√
nhUn(β0, η0, t, v),

√
nhUn(β0, η0, t, v)〉

=
nh

n2

n∑

i=1

∫ τ

0

K2
h(β0

TZi − v)
[
(βT0 Zi)TH−1 − Sh,1(β0, η0, u, v)

Sh,0(β0, η0, u, v)

]⊗2

× Yi(u) exp{ψ(β0
TZi)}λ0(u)du.

=f(v) exp{ψ(v)}Λ(t, v)
∫
K2(u)(u− ν1)⊗2du+ op(1) ≡ ΣU (t, v) + op(1),

where the last step follows from Lemma 1.
The Lindberg conditions are satisfied (see [19] for details), we have thus proven

that

(6)
√
nhUn(β0, η0, τ, v)→D N

(
0,ΣU (τ, v)

)
.
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As for the term V and V I, similarly to the proof of Theorem 1, we have

(7)

V =
∫ τ

0

1
n

n∑

i=1

(
Kh(β̂TZi − v)−Kh(β0

TZi − v)
)

×
[
(βT0 Zi)TH−1 − Sh,1(β0, η0, u, v)

Sh,0(β0, η0, u, v)

]
dMi(u)

= Op(
1
nh2

),

and
(8)

V I =
∫ τ

0

1
n

n∑

i=1

Kh(β̂TZi − v)

×
[
(β̂TZi − βT0 Zi)TH−1 − Sh,1(β̂, η0, u, v)

Sh,0(β̂, η0, u, v)
− Sh,1(β0, η0, u, v)
Sh,0(β0, η0, u, v)

]
dMi(u)

=Op(
1
nh

).

Applying Lemma 1 again and by Taylor expansion we get

(9)

Bn(β̂, η0, τ, v) =f(v) exp{ψ(v)}ψ
(p+1)(v)

(p+ 1)!
Λ(τ, v)

∫
K(u)(u− ν1)up+1duhp+1

+ op(hp+1) +Op(
1√
n

)

=b(τ, v) + op(hp+1) +Op(
1√
n

).

We have thus shown that, under (6), (7), (8) and (9),

(10)
√
nhl′n(β̂, η0, τ, v)→D N

(
b(τ, v),ΣU (τ, v)

)
.

Next we focus on the property of the second derivative l′′n(β̂, η, t, v). Let η̂ = Hγ̂,
by Taylor expansion and Lemma 1 we have

(11) 0 = l′n(β̂, η̂, τ, v) = l′n(β̂, η0, τ, v) + l′′n(β̂, η∗∗, τ, v)(η̂ − η0),

where η∗∗ lies in between η̂ and η0. Theorem 1 implies η̂ →p η0, hence η∗∗ →p η0.
Using condition (C1) and boundedness of β̂TZ, we arrive at

(12) l′′n(β̂, η∗∗, τ, v) = l′′n(β̂, η0, τ, v) + op(1) = Σl(τ, v) + op(1).

By (10), (11), (12) and Slutsky’s theorem,

√
nh(η̂ − η0) =

√
nh

[
−l′′n(β̂, η∗∗, τ, v)−1l′n(β̂, η0, τ, v)

]
+ op(1)

→D N
(
b(τ, v),Σl(τ, v)−1ΣU (τ, v)Σl(τ, v)−1

)
.

Simple calculations lead to the result in Theorem 2.
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Semiparametric Models and Likelihood -

The Power of Ranks

Kjell Doksum1,∗ and Akichika Ozeki2,∗

University of Wisconsin, Madison

Abstract: We consider classes of models related to those introduced by
Lehmann in 1953 and Sklar in 1959. Recently developed algorithms for finding
profile NP likelihood procedures are discussed, extended and implemented for
such models by combining them with the MM algorithm. In particular we con-
sider statistical procedures for a regression model with proportional expected
hazard rates, and for transformation models including the normal copula. A
variety of likelihoods introduced to deal with semiparametric models are con-
sidered. They all generate rank results, not only tests, but also estimates,
confidence regions, and optimality theory, thereby, to paraphrase Lehmann
(1953), demonstrating “the power of ranks”.
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1. Introduction

We will focus on statistical inference for models where the distribution of the data
can be expressed as a parametric function of unknown distribution functions.

1.1. Lehmann Type Models. Cox Regression

Suppose T is a random variable with a continuous distribution function F. For
testing the null hypothesis H0 : F = F0, Lehmann (1953) considered alternatives
of the form

(1.1) Fθ(·) = Cθ(F0(·)),
for some continuous distribution Cθ(·) on [0, 1], which is known except for the pa-
rameter θ. We consider the problem of estimating θ when F0(·) is an unknown base-
line distribution. In this case, if T1, · · · , Tn are independent with Ti ∼ Cθi(F0(·))
and we set Ui = F0(Ti), then Ui has distribution Cθi(·) Moreover Ri ≡ Rank(Ti) =
Rank(Ui), which implies that the distribution of any statistical method based on
R1, · · · , Rn will not depend on F0.

For regression experiments with observations (Ti,xi), i = 1, · · · , n, where Ti
is a response and xi is a vector of nonrandom covariates, Cox (1972) considered
the parametrization θi = g(βTxi) with g(·) a known function and β a vector of
regression coefficients. He considered statistical inference procedures based on the
Cox (1972, 1975) partial likelihood in very general frameworks. These procedures
are based on generalized ranks and show how powerful ranks are in generating
statistical inference procedures.

In this paper we consider a special case of (1.1) obtained from the Lehmann
models [F0(t)]N and 1 − [1 − F0(t)]N by letting N be a zero truncated Poisson
variable whose parameter depends on covariates and regression coefficients. We call
this model “SINAMI” after SIbuya (1968) and NAbeya and MIura (1972). For a
subset of the parameter space, the model has proportional expected hazard rate
(PEHR). We show that semiparametric likelihood methods for the SINAMI model
give more weight to intermediate survival times than the Cox proportional hazard
model which heavily weights long survival times. Recently developed algorithms for
finding profile nonparametric maximum likelihood estimates (profile NPMLE’s) are
combined with the MM algorithm to produce estimates. In the two sample case, we
carry out a Monte Carlo comparison of the NPMLE with a parametric MLE and
a method of moment (MOM) estimate of the two sample parameter. The NPMLE
is nearly unbiased but only about 70% as efficient in terms of root MSE as the
parametric estimate if the parametric model is true. The MOM estimate is slightly
less efficient than the NPMLE.

1.2. Sklar Type Models. Copula Regression

Suppose X and Y are random variables with continuous joint distribution H(·, ·)
and marginals F1(·) and F2(·). Sklar (1959) considered models that include models
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of the form

(1.2) Hθ(·, ·) = Cθ(F1(·), F2(·)),

for some continuous distribution Cθ(·, ·) on [0, 1] × [0, 1], which is known except
for the parameter θ. We consider the problem of estimating θ when F1(·) and
F2(·) are unknown baseline distributions. If we set U = F1(X), V = F2(Y ),
then (U, V ) has distribution Cθ(·, ·), and Cθ(·, ·) is called a copula. Note that
if (X1, Y1), · · · , (Xn, Yn) are independent with (Xi, Yi) ∼ Hθi(·, ·), then Ri ≡
Rank(Xi) = Rank(F1(Xi)) and Si ≡ Rank(Yi) = Rank(F2(Yi)), which shows that
the distribution of any statistical method based on these ranks will not depend on
(F1, F2). This model extends in the natural way to the d-dimensional case.

In this paper we consider the bivariate normal copula model where Cθ(u, v)
= Φθ(Φ−1(u),Φ−1(v)) with Cθ the bivariate N(0, 0, 1, 1, θ) distribution. We also
consider the multivariate normal copula model and show that in regression experi-
ments it can be used to construct a “transform both sides regression” transformation
model (copula regression model.) Klaassen and Wellner (1997) have shown that the
normal scores correlation coefficient is semiparametrically efficient for the bivariate
normal copula. We use simulations to compare this estimate with the profile MLE
for the transform both sides Box-Cox regression model and a nonparametric esti-
mate based on splines thereby augmenting the comparisons made by Zou and Hall
(2002). The normal scores estimate is nearly as efficient as the parametric MLE
for estimating median regression when the transform both sides Box-Cox model is
correct. We also consider the performance of the estimates for models outside the
copula regression model and find that the normal scores based estimate of median
regression is remarkably robust with respect to both bias and variance. On the other
hand, the profile MLE of median regression derived from the transform both sides
Box-Cox model is very sensitive to deviations from the model. The nonparametric
spline estimate is the best for extreme deviations from the copula regression model.

2. Proportional Hazard and Proportional Expected Hazard Rate
Models

Interesting special cases of (1.1) are obtained by considering the distributions of
T1 = min(T01, · · · , T0k) and T2 = max(T01, · · · , T0k) where T01, T02, · · · are i.i.d. as
T0 ∼ F0. Then, for k ≥ 1,

(2.1) T1 ∼ F1(t) = 1− [1− F0(t)]k,

and

(2.2) T2 ∼ F2(t) = [F0(t)]k,

with t > 0, k = 1, 2, · · · . More general forms (Lehmann (1953); Savage (1956)) are

(2.3) T1 ∼ F1(t) = 1− [1− F0(t)]∆,

and

(2.4) T2 ∼ F2(t) = [F0(t)]∆,
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with t > 0,∆ > 0. Here (2.3) can be derived by considering two-sample models
where the two samples follow distributions of the form (2.1) with different k’s
(Bickel and Doksum (2007), Problem 1.1.12.)

For T1, the hazard rate is

(2.5) λ(t) ≡ f(t)
1− F (t)

= 4 f0(t)
1− F0(t)

≡ 4λ0(t).

In regression experiments, we set 4i = g(βTxi), and note that (2.5) is the Cox
proportional hazard (PH) model (Cox (1972)).

Nabeya and Miura (1972) proposed replacing k in (2.1) and (2.2) by a random
variable. In particular, they considered T1 = min(T01, · · · , T0N ), where N is in-
dependent of T01, T02, · · · , and has a zero truncated Poisson(θ) distribution with
θ > 0. They also considered T2 = max(T01, · · · , T0M ), T0i ∼ F0 where M is in-
dependent of T01, T02, · · · , and has a zero truncated Poisson(−θ) distribution with
θ < 0.

Using Sibuya (1968), they found

T1 ∼ F1(t) =
1− e−θF0(t)

1− e−θ , θ > 0,(2.6)

T2 ∼ F2(t) =
1− e−θF0(t)

1− e−θ , θ < 0.(2.7)

Combining (2.6) and (2.7), we get

T ∼ F (t) =
1− e−θF0(t)

1− e−θ , θ 6= 0,

= F0(t), θ = 0.
(2.8)

Note that model (2.6) is a mixture of proportional hazard models for individuals
with the same baseline hazard rate λ0(·) but different hazard factors 4 in the
factorization (2.5) of the hazard rate. Let λ(t; k) denote the hazard rate of T1 given
N = k; then by (2.5)

Eλ(t;N) =
∞∑

k=1

kλ0(t)pθ(k) = τ(θ)λ0(t), θ > 0,(2.9)

where pθ(x) is the zero truncated Poisson(θ) probability and

τ(θ) = E(N) =
θ

1− exp(−θ) .(2.10)

Thus (2.6) is a model with proportional expected hazard rate. Note that (2.8) does
not have this property for θ < 0. We will refer to (2.6) and (2.8) as the PEHR and
SINAMI models, respectively.

Remark 2.1 : In regression experiments, the traditional frailty models are also
constructed by introducing a random element in the PH model. However, these
models are different from the PEHR and SINAMI models. To see this recall that
in the frailty model the conditional hazard rate given the covariate vector x (see
Oakes (1992)) for the history and interpretation of frailty models) is of the form

λW (t|x) = λ0(t)W exp[βTx],(2.11)
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where W is a random effect that incorporates potential unobservable covariates
that represent frailties. Semiparametric optimality theory for model (2.11) has been
developed by Kosorok, Lee, and Fine (2004).

Consider model (2.5) with ∆ = N and N a zero truncated Poisson(θ) random
variable with θ = g(βTx), i.e., the conditional hazard rate given x is

(2.12) λ(N)(t|x) = Nλ0(t).

Here N plays the role of W exp[βTx] in (2.11). However, (2.11) and (2.12) are dif-
ferent because N is an integer and W exp[βTx] is not when β 6= 0. In model (2.12),
N represents the effect of both observed covariates and frailties. In deriving the
distribution function (2.6), the unobservable covariates are averaged out, that is,
we compute P (T ≤ t) = E[P (T ≤ t|N)].

Remark 2.2 : Model (2.8) was considered by Bell and Doksum (1966), Exam-
ple 5.2 and Table 8.1) and Ferguson (1967, p.257, Problem 5.7.7) without any of
the above interpretations. Nabeya and Miura (1972) did not use any proportional
hazard or frailty interpretation. These concepts had not been invented yet.

Fig.1 gives a plot of the relative hazard rate λ(t|x = 1)/λ(t|x = 0) with
θ = −3,−1.5, 1.5, 3 for model (2.8) with θ = βx, F0(t) = 1 − exp(−t), t > 0,
and

λ(t|x) =
θf0(t)

1− e−θ(1−F0(t))
.(2.13)

In the PEHR and SINAMI models, the hazard ratio between two covariate values
converge to unity as time increases. This explains why the likelihoods for these mod-
els give less weight to long survival times than the likelihood for the Cox model (see
Section 3). The hazard rate is decreasing for the PEHR model for any continuous
F0.

3. Rank, Partial and Marginal Likelihood

In regression experiments, we observe (Ti,xi), i = 1, · · · , n, where T1,· · · , Tn are
independent responses and xi is a nonrandom covariate vector. In the proportional
hazard model, it is customary to use model (2.5) for Ti with 4i = exp(βTxi)
because 4i needs to be positive. In the PEHR model, θi = βTxi is a possible
parametrization, but θi = exp(βTxi) could also be used. Let R = (R1, · · · , Rn)
where Ri = Rank(Ti), then lr(β) = P (R = r) is the rank likelihood (Hoeffding
(1951)).

We first consider the one covariate case. Using the rank likelihood, the locally
most powerful (LMP) rank test statistic for H0 : β = 0 versus H1 : β > 0 is
(approximately) for the Cox model (Savage (1956), 1957), Cox (1964)), Oakes and
Jeong (1998)):

n∑

i=1

[− log(1− Ri
n+ 1

)](xi − x̄) (Savage or log rank),(3.1)

and for the PEHR and SINAMI models, the LMP rank test statistics is (Bell and
Doksum (1966), Ferguson (1967), Nabeya and Miura (1972)):

n∑

i=1

Ri
n+ 1

(xi − x̄) (Wilcoxon type),(3.2)
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Fig 1. SINAMI and PEHR hazard ratios for θ = −3,−1.5, 1.5, 3.

where Ri =Rank(Ti). The log rank statistic gives more weights to large observa-
tions, that is, in survival analysis, to those that live longer, while the Wilcoxon
statistics is even handed.

In order to compare how much relative weight is given to the small, in be-
tween, and large observed survival times for the PH and PEHR models, we next
consider the rank likelihood for d covariates. Note that if h(·) is decreasing, then
Rank(h(Ti)) = n + 1 − Ri. For the proportional hazard model, transform Ti by
Ui = 1 − F0(Ti), then by (2.3) we have fUi(u) = 4iu4i−1, 0 < u < 1. Hoeffding
(1951) formula shows,

Rank lkhd = Πn
i=14i

∫
· · · · · · · · ·

∫

0<u1<u2<···<un<1

Πn
i=1u

δi−1
i du1 · · · dun,(3.3)

where δi = 4bi and bi= index on the T with rank n+ 1− i= reverse anti-rank. It
follows that

Rank lkhd ∝ Πn
i=1

4i∑
k:Tk≥T(i)

4k
,(3.4)

that is, the familiar Cox (1972, 1975) partial likelihood formula. Here {k : Tk ≥
T(i)}= patients at risk at time T(i) where T(i) is the ith ordered survival time.
Kalbfleich and Prentice (1973, 2002) called the rank likelihood the marginal likeli-
hood and extended it to censored data.

For the PEHR model, transform Ti by the decreasing function
Ui = a−1{exp{−F0(Ti)} − b}, then, we have fi(u) = aτi(au + b)θi−1, 0 < u < 1,
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where b = e−1, a = 1− b, and τi ≡ τ(θi). Let γi = θbi , bi=index on the T with rank
n+ 1− i. Then,

Rank lkhd ∝ (Πn
i=1τi)

∫
· · · · · · · · ·

∫

0<u1<u2<···<un<1

Πn
i=1(aui + b)γi−1du1 · · · dun.(3.5)

If we perform the integration, we find that the likelihood for the PEHR model is
similar to the likelihood for the Cox model except that in addition to terms involving
{k : Tk ≥ T(i)}, i = 1, · · · , n, it includes terms involving {k : T(i) ≤ Tk ≤ T(j)} ,
i = 1, · · · , n, j = 1, · · · , n, i 6= j. That is, the PEHR likelihood gives more weight
to the intermediate survival times than the Cox likelihood.

Computationally, the Cox rank likelihood is easier than the PEHR rank likeli-
hood. However, we can handle the PEHR rank likelihood with available algorithms
and software (e.g. MATLAB.) More generally, F (x) = Cθ(F0(x)) type models, orig-
inally considered by Lehmann (1953), can be handled effectively by considering the
profile NP likelihood of the next section (e.g. Tsodikov and Gabribotti (2007)),
Zeng and Lin (2007) ).

4. Profile NP Likelihood

Andersen, Borgan, Gill, and Keiding (1996), Bickel, Klaassen, Ritov, and Wellner
(1993, 1996), van der Vaart (1998), Murphy and van der Vaart (2000), Tsodikov
and Garibotti (2007), Zeng and Lin (2007) and many others considered the problem
of finding the MLE of all the parameters in a semiparametric model. It is useful
to divide the procedure into two steps by grouping parameters into two groups.
Suppose the distribution function of T is of the form P (T ≤ t) = F (θ, η(t)), where
θ ∈ Rd and η(·) is a nondecreasing function. If we assume temporarily that η(·) has
a positive derivative η′(t) for t ∈ {t1, · · · , tn}, then the likelihood is

n∏

i=1

η′(ti)f(θ, η(ti)),

where f(θ, η) = ∂F (θ, η)/∂η. The NP likelihood we consider is of the form

LNP (θ, η) =
n∏

i=1

η{ti}f(θ, η[ti]),

where η[ti] =
∑
j≤i η{ti} is a step function with positive jumps η{ti} at the data

points ti, i = 1, · · · , n.
We assume that

af(θ, a)→ 0 as a→∞

Next we fix θ, and define η̂θ{ti} as

η̂θ{.} = ARG MAXη{.}LNP (θ, η).(4.1)

Set

PROF NPLIK = l(θ) = MAXη{.}LNP (θ, η),(4.2)
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and solve

θ̂ = ARG MAX l(θ).(4.3)

Next estimate η{·} as η̂θ̂{·}. In the Lehmann model (1.1), the NP likelihood is

n∏

i=1

F0{xi}C ′θ(
∑

j≤i
F0{xj}),

The method is similar to finding the empirical MLE, Owen (1988, 2001), and profile
(partial) MLE’s as in Andersen, et al. (1996), and Murphy and van der Vaart (2000).

Remark 4.1 : Note that when P (T ≤ t) = F (θ, η(t)), (4.1), (4.2), and (4.3)
do not depend on the values of t1, · · · , tn. In regression experiments, they will de-
pend on the ranks of t1, · · · , tn. For example, see (4.4) and (5.1). This is in contrast
to the Hodges and Lehmann (1963) approach that uses estimating equations based
on rank test statistics to obtain estimates of parameters. In this Hodges-Lehmann
“rank inversion” approach, estimates are functions of the “raw” data rather than
the ranks.

As an example that will guide the algorithm for the PEHR model, consider the
Cox model. Set Λ(t) = − log(1− F0(t)), then,

LNP (β,Λ) =
n∏

i=1

eβ
T xiΛ{ti}e−(eβ

T xi )Λ[ti],

where

Λ[ti] =
∑

j:tj≤ti
Λ{tj}.

Using calculus, we find

Λ̂β{ti} = ARG MAXΛ{ti} LNP (β,Λ) = (
∑

j:tj≥ti
eβ

T xj )−1,

and

l(β) = PROF NPLIK =
n∏

i=1

eβ
T xi

∑
j:tj≥ti e

βT xj
.(4.4)

This is exactly the same as the rank, the partial, and the marginal likelihood.

5. Profile NP Likelihood for the PEHR Model

Consider model (2.6) with θ > 0. Set τ(θ) = θ[1− e−θ]−1, then

LNP (θ, F0) = [
n∏

i=1

τ(θi)]
n∏

i=1

F0{ti}e−θiF0[ti],(5.1)

where F0[ti] =
∑
j:tj≤ti F0{tj}. Now set pi ≡ F0{ti} and maximize with respect

to p1, · · · , pn with θ fixed. The maximization problem looks very similar to Cox
model maximization except for the constraint

∑
pi = 1. We handle this constraint

by writing F0(t) = 1− exp[−Λ(t)] with Λ(t) unconstrained except for Λ(t) ≥ 0 and
by using a new approach based on the MM algorithm.
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5.1. The MM Algorithm

Lang, Hunter and Yang (2000) introduced a concept called the MM algorithm. Its
idea is that instead of maximizing a complicated original objective function, use a
simpler surrogate function so that each iteration is faster and guarantees that the
original objective function increases. Given the original objective function l(h) for a
maximization problem, a surrogate function g(h|hold) must satisfy two properties:

l(hold) = g(hold|hold),(5.2)

l(h) ≥ g(h|hold).(5.3)

The EM algorithm is a special case of the MM algorithm. A practical implemen-
tation issue of the MM algorithm is that we have to find a nice surrogate function
case by case.

Now we construct a surrogate function based on Tsodikov (2003). Suppose we
can write l(·) in the form l(h) = B(h) − A(h) for some parameter vector h > 0,
where A and B are differentiable concave functions. Then by the concavity property,

g(h|hold) = B(h)−A(hold)−∇TA(hold)(h− hold),(5.4)

where∇TA(h) = ∂A/∂h is the gradient of A, satisfies (5.2) and (5.3), and g(h|hold)
is a surrogate function for l(h). Differentiating (5.4) gives

∇TB(hnew) = ∇TA(hold).(5.5)

Solve (5.5) for hnew. Iterate the procedure until there is a minimal change in h .

5.2. The MM Algorithm for the PEHR Model with θ ≥ 0 (SINAMI
with θ ≥ 0)

Let θi = g(βTxi), for some known function g(·) ≥ 0. When θi = 0, the distribution
function of Ti is F0(t). Let F0(t) = 1−exp[−Λ(t)], hk = Λ{tk}, and Λ[ti] =

∑i
k=1 hk

with Λ(t) ≥ 0 and hk ≥ 0. Then for a temporarily fixed numerical vector β,

l(h) = log[LNP (β,h)] =
n∑

i=1

log τ(θi) +
n∑

i=1

log hi

−
n∑

i=1

[
i∑

k=1

hk + θi(1− exp(−
i∑

k=1

hk))].

(5.6)

Now we can write l(h) = B(h)−A(h) with

B(h) =
n∑

i=1

log hi,(5.7)

A(h) =
n∑

i=1

[
i∑

k=1

hk + θi(1− exp(−
i∑

k=1

hk))].(5.8)

Here we may ignore Σ log τ(θi) because we maximize (5.6) w.r.t. h.

imsart-coll ver. 2008/08/29 file: Doksum.tex date: March 25, 2009



Semiparametric Models and Likelihood - The Power of Ranks 75

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

B(h) and A(h) are concave, because for 0 ≤ t ≤ 1, B(tha + (1 − t)hb) ≥
tB(ha)+(1−t)B(hb) and by mathematical induction, A(tha+(1−t)hb) ≥ tA(ha)+
(1− t)A(hb) hold. Note that

∂B/∂hj = 1/hj , j = 1, ..., n,(5.9)

∂A/∂hj =
n∑

i=1

(1 + θi(1− exp(−
i∑

k=1

hk)))1(j ≤ i).(5.10)

Using (5.5), (5.9), and (5.10), update hj , j = 1, · · · , n, at the same time,

hj,new = [
n∑

i=1

(1 + θi(1− exp(−
i∑

k=1

hk,old)))1(j ≤ i)]−1.(5.11)

Iterate (5.11) until there is a minimal change in l(ĥnew); call the result ĥA
(Approximated profile NPMLE). Note that we call ĥA approximated profile NPMLE
because ĥA is obtained by fixing β. This approximation is necessary because there
is no closed form ĥ w.r.t. β. Next set l(β) = log[LNP (β, ĥA)] and maximize w.r.t.
β.

5.3. The MM Algorithm for the SINAMI Model with θ ≤ 0

Consider model (2.7) with θi = g(βTxi), for some known function g(·) ≤ 0. In this
case we can use the algorithm of Section 5.2. To see this, suppose T satisfies model
(2.7) with parameter θ2 < 0. Set V = 1− F0(T ), then V satisfies model (2.6) with
parameter θ1 = −θ2. Moreover, the rank of 1− F0(Ti) is n+ 1−Ri.

5.4. The MM Algorithm for the SINAMI Model with θ ∈ R

Consider model (2.7) with θi = g(βTxi), for some known function g(·) ∈ R.
In this case we can not use the transformation in Section 5.3 because it changes
the likelihood and the monotonicity of the likelihood as a function of θ does not
necessarily hold. Instead, we modify the algorithm as follows: If the value θ̂j in the
jth iteration is positive, use the MM algorithm in Section 5.2. to find ĥj . If θ̂j < 0,
then (5.6) implies that finding the maximizer h is a convex optimization problem
which produces ĥj .

5.5. Profile NPMLE Implementation

Successful convergence of the MM algorithm depends on a good starting point
(θ̂, ĥ). We consider the two sample problem:

T0,i ∼ F0(t), i = 1, ..., n0,(5.12)

T1,i ∼ F (t) =

{
1−e−θF0(t)

1−e−θ , (θ > 0), i = 1, ..., n1,

F0(t), (θ = 0), i = 1, ..., n1,
(5.13)
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where F0(·) is an unknown distribution with density f0. Note that the density of
F (t) is

f(t; θ) =
{
τ(θ)f0(t)e−θF0(t), (θ > 0),
f0(t), (θ = 0).

(5.14)

We use an algorithm to find (θ̂, ĥ) where θ = β in this case. For fixed F0, (5.14)
gives an MOM estimating equation for θ. We plug in an estimate F̂0 for F0, and
use the following algorithm:

step (1) : F̂0 → step (2) : θ̂ → step (3) : (θ̂A ↔ ĥA)until θ̂A converges.

Here θ̂A and ĥA are approximated profile NPMLE’s from Section 5.2. The details
are as follows:
Step (1) : Compute the empirical distribution F̂0(t) based on T0,i only:

F̂0,[0](t) ≡ F̂0(t) =
1

1 + n0

n0∑

i=1

1(T0,i ≤ t).(5.15)

Here F̂0(t) →a.s. F0(t) uniformly in t as n0 → ∞. The subscript [0] indicate
iteration zero (starting point) for step (3). Note that the one-to-one relation between
F̂0 and Λ̂0 is used to obtain ĥ by solving for h in the equations:

F̂0(ti) ≡ F̂0,i = exp(−Λ̂i), where

Λ̂[ti] ≡ Λ̂i =
i∑

k=1

ĥk, i = 1, ..., n0.
(5.16)

Step (2) : Solve for θ̂ based on F̂0,[0](t):

T̄1 = τ(θ)
∫
ye−θF̂0,[0](y)dF̂0,[0](y)

= τ(θ)
n0∑

i=1

T0,(i) exp(−θ i
n0

)
1
n0
,

(5.17)

where T0,(i) is an order statistics of T0,1, · · · , T0,n0 and T̄1 =
n1∑

i=1

T1,i/n1. The so-

lution is uniquely determined because the distribution function (5.13) is monotone
increasing in θ and hence its mean is monotone decreasing in θ. If a model is θ ≥ 0
and θ̂ < 0, set θ̂ = 0. If a model is θ < 0 and θ̂ > 0, set θ̂ = 0.
Step (3) : Compute θ̂A and ĥA as follows:

(θ̂A ↔ ĥA)until θ̂A converges.(5.18)

The first iteration θ̂A,[1], is obtained by maximizing (5.6) with θ̂ as a starting point,
i.e., θ̂A,[0] = θ̂ and with fixed ĥ[0] obtained from (5.16) and F̂0,[0], i.e.,

θ̂A,[1] = arg max
θ
{l(θ, ĥ[0]) : θ ≥ 0}.(5.19)
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Then by the MM algorithm in Section 5.2 with β0 = θ0 = θ̂A,[1] (see (5.11)), obtain
ĥ[1] using the starting point ĥ[0]. Next obtain

θ̂A,[2] = arg max
θ
{l(θ, ĥA,[1]) : θ ≥ 0},(5.20)

with starting point θ̂A,[1]. Then by the MM algorithm in Section 5.2 with β0 =
θ0 = θ̂A,[2], obtain ĥA,[2] with starting point ĥA,[1]. Repeat the procedure to get
θ̂A,[j] and ĥA,[j] until convergence, i.e., |θ̂A,[j] − θ̂A,[j−1]| < ε for some small ε.

Numerical optimizations for θ̂ and θ̂A are carried out by the MATLAB fmincon()
function.

Remark 5.1 : For fixed ĥ, l(θ, ĥ) is strictly concave and have a unique maxi-
mum.

Remark 5.2 : The estimate of β in the Cox model that we have discussed is
asymptotically optimal in the semiparametric sense ( Begun, Hall, Huang, and
Wellner (1983), Bickel et al. (1993, 1998), van der Vaart (1998)), Murphy and
van der Vaart (2000)). These references and others give results that can be used
to check the semiparametric asymptotic optimality of the profile NPMLE in the
PEHR model.

Remark 5.3 : Transformation models. We can show that the PEHR is a special
case of transformation models as follows: Let Fλ be the exponential (λ) distribution
function and define

G0(y|x) =
1− e−θFλ(y)

1− e−θ , y > 0,(5.21)

where θ = g(x,β). Let ψ be an increasing function from [0,∞) to [0,∞) and define
the transformation model

G(y|x) = G0(ψ(y)|x).(5.22)

This model is of the form (2.6) with F0 = Fλψ(t). Klaassen (2007) gives re-
sults for general transformation models that can be used to check semiparametric
asymptotic efficiency of estimates of β in the model (2.6).

5.6. Estimation of the Variance of the Profile NPMLE

Hypothesis tests and confidence intervals require standard errors (estimates of the
standard deviation) of θ̂A. An algorithm developed by Tsodikov and Garibotti
(2007) combined with the preceding algorithm allows us to compute the profile in-
formation matrix which is the observed information matrix derived from the profile
likelihood. This provides standard errors SE(θ̂A) of θ̂A.

6. Simulation Results

6.1. PEHR Model Estimates

Monte Carlo (MC) simulation for model (5.13) with F0 equal to the exponential
distribution EXP(1) is based on 1000 Monte Carlo samples with n=100, 200, and

imsart-coll ver. 2008/08/29 file: Doksum.tex date: March 25, 2009



78 Doksum and Ozeki

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

θ 2 3
n 100 200 300 100 200 300

E[θ̂MOM ] 1.97 2.00 2.02 3.05 3.00 3.01

E[θ̂A] 1.99 2.00 2.01 3.07 3.00 3.01

E[θ̂PAR] 2.02 2.00 2.01 3.03 3.01 3.00

SD(θ̂MOM ) 0.819 0.551 0.479 0.972 0.635 0.506

SD(θ̂A) 0.788 0.541 0.466 0.960 0.618 0.497

SD(θ̂PAR) 0.541 0.387 0.317 0.605 0.431 0.335

E[SE(θ̂A)] 0.752 0.527 0.430 0.837 0.578 0.471

MSE[θ̂MOM ] 0.671 0.303 0.230 0.949 0.403 0.256

MSE[θ̂A] 0.621 0.292 0.217 0.926 0.383 0.248

MSE[θ̂PAR] 0.289 0.150 0.101 0.367 0.186 0.112
Table 1

PEHR model simulation estimates (MC=1000, θ = 2, 3)

300. T0,i ∼ EXP (1), i = 1, · · · , n0, T1,i ∼ PEHR(θ = 2, or 3), i = 1, · · · , n1,
n0 = n1 = n/2, iid. We compute Monte Carlo estimates of the expected values,
standard deviations (SD’s), and MSE’s of θ̂MOM , θ̂A, and θ̂PAR where θ̂PAR is the
parametric model MLE, obtained by assuming that F0 is known and equal to the
EXP(1) distribution.

We also compute the Monte Carlo estimates of the expected values E[SE (θ̂A)]
of the standard errors computed as described in Section 5.5. Table 1 summarizes
the result.

Overall θ̂MOM , θ̂A, and θ̂PAR have almost no bias in the estimation of θ =2 or
3. As expected, the parametric model estimate θ̂PAR has the smallest MSE. The
approximated profile NPMLE θ̂A has a smaller MSE than θ̂MOM , but the difference
is small. The approximation to SD(θ̂A) is very good and improves as the sample
size increases.

6.2. Model Fit for Misspecified Model

Next consider a model that is neither a Cox PH model nor a PEHR model: i.e.,
T0,i ∼ EXP (1) and the true model for T1,i is : Case 1, Gamma(shape=0.5,
scale=0.5), and the : Case 2, Weibull(shape=0.5, scale=0.2). Here the target values
θ and h are those that minimize the Kullback-Leibler divergence between the true
distribution and the model class of distributions (Doksum, Ozeki, Kim and Neto
(2007)) .

Fig. 2 shows that PEHR gives better fit than the Cox model.

7. Estimation in the Normal Copula Model

7.1. The One Covariate Case

Assume that the pair (X,Y) has a joint density f(x,y) with respect to Lebesgue
measure on R2 and a joint distribution function F(x,y). Let F1 and F2 be the
marginal distribution functions of X and Y, respectively, and let Φ denote the
standard normal distribution function. Consider the transformations X → Z =
Φ−1(F1(X)), Y → W = Φ−1(F2(Y )). Then the marginal distributions of Z and
W are standard normal. The bivariate normal copula model F is defined by the

imsart-coll ver. 2008/08/29 file: Doksum.tex date: March 25, 2009



Semiparametric Models and Likelihood - The Power of Ranks 79

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

time

h
a
za

rd
 r

a
tio

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

True
PEHR
Cox

(a) True model : Gamma (shape = 0.5,
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(b) True model : Weibull (shape = 0.5,

scale = 0.2).

Fig 2. Cox and PEHR estimated hazard ratio when F0 ∼ EXP (1) and F ∼ Gamma or Weibull.

assumption that the joint distribution of (Z,W) is bivariate normal with zero mean,
unit variance, and correlation coefficient ρ. That is,

F = {F : (Φ−1(F1(X)),Φ−1(F2(Y ))) ∼ N(0, 0, 1, 1, ρ)},

where F1 and F2 are the marginals of F. Let {(Xi, Yi), i = 1, 2, · · · , n} be in-
dependent and identically distributed with distribution function F ∈ F , and set
Zi = Φ−1(F1(Xi)), Wi = Φ−1 (F2(Yi)), i = 1, 2, · · · , n. If we (temporarily) as-
sume that F1 and F2 are known, then because E(ZW) = ρ, a method of mo-
ments ”estimate” of ρ, is rMOM = n−1

∑n
i=1 ZiWi. The asymptotic distribution

of
√
n(rMOM − ρ) is N(0, 1 + ρ2) when F ∈ F . Assuming F1 and F2 known, the

asymptotic distribution of
√
n(rMLE − ρ), where rMLE is the maximum likelihood

”estimate” of ρ is N(0, (1−ρ2)2/(1+ρ2)). The asymptotic variance (1−ρ2)2/(1+ρ2)
of rMLE is smaller than the asymptotic variance (1−ρ2)2 of the usual Pearson cor-
relation coefficient rP and much smaller than the asymptotic variance 1 + ρ2 of
rMOM .

Note that F is invariant under coordinate-wise increasing transformations. That
is, if (X,Y ) ∼ F ∈ F and U = h1(X), V = h2(Y ) with h1 and h2 increasing, then
the distribution G of (U,V) is in F . If we want methods that are invariant under
such transformations, we must use statistics based on the ranks defined in Section
1.

Suppose next that F1 and F2 are unknown. It may then make sense to replace
the ordered Z’s and W’s by their expected values. This leads to the Fisher and
Yates (1938) or normal scores E(Z(i)), i = 1, · · · , n where Z(1), · · · , Z(n) are N(0,1)
order statistics. We write a(i) = E(Z(i)). An accurate approximation to E(Z(i)) is
Φ−1[(i− 3/8)/(n+ 1/4)], e.g. Cox (2006).

Let Z
′
i = a(Ri), W

′
i = a(Si) where Ri and Si are the ranks of Xi and Yi when

the X’s and Y’s are ranked separately. Then we obtain estimates ρ̂MOM , ρ̂MLE ,
and ρ̂P of ρ when F1 and F2 are unknown by replacing Zi and Wi by Z

′
i and W

′
i in

rMOM , rMLE and rP . In this case ρ̂MOM , ρ̂P are nearly identical and asymptotically
equivalent, but they are different from ρ̂MLE . We will use ρ̂P because it is slightly
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less biased, and denote it by ρ̂NS where NS signifies normal scores. Thus

ρ̂NS =
∑

Z ′iW
′
i/
∑

a2(i).(7.1)

It follows from Bhuchongkul (1964) that based on the rank likelihood, ρ̂NS is,
uniformly in F1 and F2, a locally most powerful test statistics in the bivariate
normal copula model. Zou and Hall (2002) gave an asymptotic extension of this
result. They also computed the rank likelihood estimate of ρ in the bivariate normal
copula model using an improved version of the likelihood sampler in Doksum(1987).

Klaassen and Wellner (1997) found
√
n(ρ̂NS−ρ)→d N(0, (1−ρ2)2) in the copula

model F with F1 and F2 unknown; the same as for the Pearson correlation in the
bivariate normal model. In fact, in a bivariate normal(µ1, µ2, σ

2
1 , σ

2
2 , ρ) model, rP

is the MLE, and rP and ρ̂NS are asymptotically optimal in the parametric sense.
A fourth possible estimate is the profile NP estimate obtained by fixing ρ and

replacing F1 and F2 by step functions with jumps {pi} and {qi} at (Xi, Yi) in the
log likelihood for the normal copula model. That is, ignoring constants (ρ is fixed),
we maximize

l(p, q) =
∑

i

{log pi + log qi

+
1
2

((Φ−1(
∑

k:Xk≤Xi
pk))2 +

1
2

(Φ−1(
∑

k:Yk≤Yi
qk))2

+
1
2

(1− ρ2)−1[(Φ−1(
∑

k:Xk≤Xi
pk))2

− 2ρΦ−1(
∑

k:Xk≤Xi
pk)Φ−1(

∑

k:Yk≤Yi
qk) + (Φ−1(

∑

k:Yk≤Yi
qk))2]},

(7.2)

w.r.t. (p, q) where
∑
pi = 1 and

∑
qi = 1. Then given (p̂, q̂), maximize the log

likelihood w.r.t. ρ, which gives ρ̂PROF , a profile NPMLE.

Remark 7.1 : An estimate θ̂ of a parameter θ ∈ R in a semiparametric model is
regular if

√
n(θ̂ − θ) →d N(0, Vθ̂(θ, η)) for some asymptotic variance Vθ̂(θ, η) and

if θ̂ satisfies additional regularity conditions given in Bickel et al. (1993, 1998). For
F ∈ F , VrP (ρ, F ) depends on F (e.g. Bickel and Doksum (2007), Example 5.3.6),
while Vρ̂NS (ρ, F ) does not, as shown by Klaassen and Wellner (1997). Klaassen
and Wellner (1997) go on to argue that (1 − ρ2)2 is a semiparametric asymptotic
variance lower bound for the class S of all regular estimates of ρ. Thus ρ̂NS is
semiparametrically optimal in the minimax sense:

sup{Vρ̂NS (ρ, F ) : F ∈ F} = inf
ρ̂∈S

sup{Vρ̂(ρ, F ) : F ∈ F}(7.3)

Remark 7.2 : Recall that ρ̂NS was obtained by inserting normal scores Z ′i and
W ′i in the MOM estimate for the model with F1 and F2 known, and that the MLE
rMLE for this model has variance (1− ρ2)2/(1 + ρ2). Klaassen and Wellner (1997)
have shown that the approximate MLE ρ̂MLE obtained from rMLE by replacing
(Zi,Wi) with (Z ′i,W

′
i ) is semiparametrically optimal in the same sense as ρ̂NS . Be-

cause the distribution of the ranks do not depend on F1 and F2, this implies that
ρ̂NS and ρ̂MLE are asymptotically equivalent for every F ∈ F . We conjecture that
ρ̂PROF is also asymptotically optimal and equivalent to ρ̂NS .
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Remark 7.3 : The asymptotic distribution of ρ̂NS when the distribution of (X,Y)
is not in F can be obtained from Ruymgaart, Shorack, and Van Zwet (1972) and
Ruymgaart (1974) .

7.2. The Multivariate Covariate Case

The normal copula model in the multivariate case is defined as follows: Let Y ∼ G,
Xj ∼ Fj , h(X) = (h1(X1), · · · , hd(Xd)), where hj , j = 0, · · · , d are increasing
functions defined by

h0(Y ) = Φ−1(G(Y )),(7.4)

hj(Xj) = Φ−1(Fj(Xj)).(7.5)

The distribution of the untransformed variables (X, Y ) is a copula model if we
assume that (h(X), h0(Y )) is multivariate normal with 0 means and unit variances.

8. Transformation and NP Models

Consider a regression experiment with response Y and a random covariate vector
X = (X1, · · · , Xd)T . We will extend the normal scores estimate ρ̂NS of Section 7 to
the d dimensioned case and compare it with estimates appropriate for parametric
and nonparametric models. In the copula regression model of Section 7.2, we can
write

h0(Y ) = βTh(X) + ε, ε ∼ N(0, σ2),(8.1)

where β is the set of regression coefficients when regressing h0(Y ) on h(X). The
transform both sides Box-Cox model is based on (8.1) with h0(Y ) = Y (λd+1),
hj(Xj) = X

(λj)
j , j = 1, · · · , d, where t(λ) = (tλ − 1)/λ. Thus for this case, we

can write

Y (λd+1) = α+ βTX(λ) + ε, ε ∼ N(0, σ2).(8.2)

We first consider a procedure for estimating the parameters in model (8.2):

I Profile Likelihood for a multivariate model.
Hernandez and Johnson (1980) considered the one sample multivariate Box-Cox

transformation model. This was adopted to regression by Doksum, Ozeki, Kim and
Neto (2007). We regard (Y (λd+1),X(λ)) as a d+1 multivariate normal (µ,Σ) vector.
Regressing Y (λd+1) on X(λ) leads to (8.2). We fix ξ ≡ (λ, λd+1) and estimate the
parameters in the normal model by maximizing the likelihood thereby obtaining
the familiar normal theory estimates (µ̂(ξ), Σ̂(ξ)). We plug these into the likeli-
hood and obtain the profile likelihood l(ξ), which we maximize to get ξ̂ and the
final estimates (µ̂(ξ̂), Σ̂ ˆ(ξ)). These are the usual linear model estimates with Yi, Xij

replaced by Y (λ̂d+1)
i , X(λ̂j)

ij . Similarly, the estimate of β in (8.2) is the usual linear

model estimate with Yi, Xij replaced by Y (λ̂d+1)
i , X(λ̂j)

ij .
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Remark 8.1 : We also considered the maximum likelihood estimates of the pa-
rameters β, σ2, and (λ, λd+1) in model (8.2). This approach has the problem that
if we want to test H0 : βj = 0, then λj is not identifiable under H0. Approach I
does not have this problem. This is one case where likelihood and profile likelihood
are very different. The algorithm for this MLE often failed to converge. When it
did converge, it produced results close to those of method I. We omit the details.

Remark 8.2 : As pointed out by Zou and Hall (2002), when d=1, the MLE
of ρ in the Box-Cox transformation model with unknown transformation param-
eters and standardized transformations have the same efficiency as the MLE for
the model with known transformation parameters because this Box-Cox model is
between the bivariate normal model and the bivariate normal copula model and the
MLE’s in these models have the same asymptotic variance (1−ρ2)2. The result that
the efficiency is the same whether or not the λ’s are known in this Box-Cox model
was also obtained by Wong (1981). This result is very different from the results of
Bickel and Doksum (1981) regarding the estimation of regression coefficients.

Remark 8.3 : Consider the transformation model

h0(Y ) = βTX + ε, ε ∼ N(0, σ),(8.3)

where X is a vector of random covariates and h(·) is increasing. In this case we
can consider the rank estimate β̂R obtained by maximizing the rank likelihood
lr(β) = P (R = r) defined in Section 3. The results of Bickel and Ritov (1997) imply
that in a certain sense β̂R is semiparametrically optimal for model (8.3). However
the normal scores estimate of β̂ = (xTx)−1xTa, where a = (a(S1), · · · , a(Sn))T

and x is a vector of nonrandom covariates, is not asymptotically optimal unless
|β|/σ tends to zero at a certain rate as n→∞ (Doksum (1987)). MC methods for
β̂R is introduced in Bickel and Doksum (2009), Section 10.5.

We next introduce a semiparametric approach for the copula regression model
and a nonparametric regression approach.

II Normal score substitution.
The model (8.1) with hj , j = 0, · · · , d, satisfying (7.4) and (7.5) is invariant

under increasing transformations. As in the d=1 case, this leads to using the ranks
{Si} of the Y’s and the ranks {Rij : i = 1, · · · , n} of Xij among {Xij : i =
1, · · · , n, j = 1, · · · , d}. Because the distribution of the ranks is invariant under
increasing transformations, for rank methods, model (8.1) is equivalent to

(8.4) Y ′ = αTX ′ + ε′,

where X ′j ∼ N(0, 1) and ε′ are independent, Y ′ ∼ N(0, 1) and αT = Σ−1ρ with
ρ = (Corr(X ′1, Y

′), · · · , Corr(X ′d, Y ′))T and Σ the correlation matrix of X ′ =
(X ′j)d×1. Here Σ is assumed to be nonsingular. Based on the distribution of the
ranks, α1, · · · , αd are identifiable parameters in model (8.4). These parameters rep-
resents the relative importance of the Xj ’s.

The normal scores Z ′ij = a(Rij) and W ′i = a(Si) have approximately the same
distribution as the unobservable X ′ij and Y ′i in model (8.4). Because E(Y ′|x′) =
αTx′, if we replace X ′ij and Y ′i with Z ′ij and W ′i , we find that an approximate
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Fig 3. ρ̂ boxplots for correctly specified model (8.7) with n=128. Top 5: λ1 = λ2 = 0.5. Bottom
5: λ1 = λ2 = 1. The horizontal line gives the true value of ρ.

method of moments estimate of α is

(8.5) α̂ = (ZTDZD)−1ZTDW
′,

where ZD is the no intercept design matrix (Z ′ij)n×d′ , d
′ is the rank of the ma-

trix (Z ′ij), and W ′ = (W ′1, · · · , W ′n)T . Any subset of variables Xj : j ∈ J with the
same ranks, say R1J , · · · , RnJ , is collapsed into one variable denoted as XJ with
ranks R1J , · · · , RnJ to avoid singularity. Based on Klaassen and Wellner (1997), we
conjecture that α̂ is semiparametrically efficient for the multivariate normal copula
model.

III Nonparametric estimation.
We next introduce a nonparametric approach. We consider the model

(8.6) Y = m(X) + ε,

where m() is unknown and ε has median zero. To estimate m(), we use a cubic B-
spline and the R function smooth.spline(). The number of knots are automatically
selected (less than the number of observations n.) The smoothing parameter is
chosen by generalized cross validation (GCV.)
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8.1. Simulation Results

We consider the d=1 case and consider the properties of estimates of ρ = Corr(h1(X),
h0(Y )). In this case, the method II estimate is ρ̂NS .

8.1.1. Correctly Specified Model

The true model satisfies

(8.7) Y (λ2) = α0 + α1X
(λ1) + ε,

where ε ∼ N(0, σ2) and X(λ1) ∼ N(µ1, σ
2
0) are independent. This model is a subset

of the normal copula model F with

(8.8) F1(x) = Φ(
x(λ1) − µ1

σ0
), F2(y) = Φ(

y(λ2) − µ2

σ2
),

where µ2 = EY (λ2), and σ2
2 = V arY (λ2). We use 1000 MC trials and take σ2 = 1,

σ2
0 = 1, (λ1, λ2) ∈ {(0.5, 0.5), (1, 1)}, α0 = 6, α1 =∈ {0, 0.1, 0.5, 1, 2}, and µ1 = 5.

Fig. 3 shows that methods I and II have similar properties for α1 ≤ 0.5. For
larger α1, the normal scores estimate has a downward bias which is negligible for
n ≥ 500 (not shown here.) Method I converges all the time with the constraint
−4 ≤ λ ≤ 4. Method II does not involve any optimization and hence converges all
the time.

8.1.2. Misspecified Model

We simulate the data from

(8.9) Y (λ2) = (1− γ)(α0 + α1X
(λ1)) + γ[L(X)] + ε,

where L() is a nonlinear function. Thus the model is a Box-Cox model when γ = 0,
but when γ > 0, we are checking the performance of the methods when the model
generating the methods are misspecified.

For comparisons of methods we need a parameter that makes sense for all three
methods. One such parameter is

(8.10) m(x) = Median(Y |X = x).

We consider the 25th, 50th, and 75th population quantiles of X, i.e., our parameters
of interest are m(x0.25), m(x0.50), and m(x0.75).

Methods I and II are based on models of the form

(8.11) h0(Y ) = g(X,β) + ε,

where h0(·) is an increasing function. If X and ε are independent and median(ε)
= 0, then

(8.12) m(x) = h−1
0 (g(X,β)).

For method I, the MLE of m(x) in model (8.7) is,

(8.13) m̂(x) = (λ̂2[β̂0 + β̂1
xλ̂1 − 1

λ̂1

] + 1)1/λ̂2 .
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For method II, write model (8.1) as

(8.14) h0(Y ) = ρh1(X) + ε, ε ∼ N(0, σ2),

where ρ ≡ ρ(h1(X), h0(Y )) is the correlation coefficient. Then by (8.12),

(8.15) m(x) = h−1
0 (ρh1(x)),

where

(8.16) h−1
0 (t) = F−1

2 (Φ(t)).

It follows that

(8.17) m(x) = F2
−1(Φ(ρΦ−1(F1(x))),

and by replacing F1 and F2 by their empiricals, a natural estimate of m(x) is

(8.18) m̂(x) = y([nΦ(ĝ(x))]),

where ĝ(x) = ρ̂NSΦ−1(F̂1(x)) and [ ] is the greatest integer function.
For method III, we use the smoothing spline estimate of E(Y |X = x) described

earlier. In our models with normal errors, E(Y |X = x) coincide with the conditional
median m(x).

In the simulation we use model (8.9) with ε ∼ N(0, σ2) and X(λ1) ∼ N(µ1, σ
2
0)

independent,

(8.19) L(t) = α0 + α1µ1 − 1.25 + 2.5[1 + exp(−10(t− µ1))]−1,

σ2 ∈ {0.01, 0.1, 0.5, 1}, σ2
0 = 1, (λ1, λ2) ∈ {(0.5, 0.5), (1, 1)}, α0 = 6.25, α1 =∈

{0, 0.5, 1, 2}, µ1 = 5, and γ ∈ {0, 0.25, 0.5, 0.75, 1}. The sample size is n=512. There
are 1000 MC trials.

Fig. 4, 5, 6, and 7 are boxplots of m̂(x0.25), m̂(x0.50), and m̂(x0.75) with the set-
ting (λ1, λ2, α1, σ

2) = (1, 1, 0.5, 0.5), (λ1, λ2, α1, σ
2) = (1, 1, 0.5, 1), (λ1, λ2, α1, σ

2)
= (0.5, 0.5, 0.5, 0.5), and (λ1, λ2, α1, σ

2) = (0.5, 0.5, 0.5, 1) respectively. Fig.8-11 give
MSE’s for the estimates m̂(x0.25), m̂(x0.50), and m̂(x0.75).

We see that method I is the best when model (8.2) is correct, that is, γ = 0.
However when the model is increasingly misspecified, i.e., as γ increases, its absolute
bias increases which leads to low MSE performance.

Method II is overall best in terms of MSE when λ1 = λ2 = 0.5 (Fig 6 and 7).
When γ = 0, it is unbiased and its variance is between Method I and Method III
(Fig 4,5,6, and 7).

Method III is overall best in terms of MSE when λ1 = λ2 = 1 and the model
is badly misspecified. It’s smaller bias makes up for its large variance in this case.
But its MSE suffers at and near model (8.2) (Fig 6, 7, γ = 0).

In summary, the normal score procedure performs very well at and close to
a copula model. For n large, this is to be expected from the results of Klaassen
and Wellner (1997). The normal scores estimate is competitive with the Box-Cox
estimate in the transform both sides Box-Cox model.
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Fig 4. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 0.5). I: profile MLE, II: normal scores, and III: NP, spline. The
true value of m(x) is the solid line.
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Fig 5. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 1). I: profile MLE, II: normal scores, and III: NP, spline. The true
value of m(x) is the solid line.
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Fig 6. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 0.5). I: profile MLE, II: normal scores, and III: NP, spline. The
true value of m(x) is the solid line.
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Fig 7. Boxplots of the three estimates of median regression m(x) for model (8.9) with
(λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 1). I: profile MLE, II: normal scores, and III: NP, spline. The
true value of m(x) is the solid line.
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Fig 8. MSE of the three estimates of m(x) as a function of the misspecification parameter γ for
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 0.5). © = I, 4 = II, + = III.
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Fig 9. MSE of the three estimates of m(x) as a function of the misspecification parameter γ for
(λ1, λ2, α1, σ2)=(1, 1, 0.5, 1). © = I, 4 = II, + = III.
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Fig 10. MSE of the three estimates of m(x) as a function of the misspecification parameter γ
for (λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 0.5). © = I, 4 = II, + = III.
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Fig 11. MSE of the three estimates of m(x) as a function of the misspecification parameter γ
for (λ1, λ2, α1, σ2)=(0.5, 0.5, 0.5, 1). © = I, 4 = II, + = III.
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On Bootstrap Tests of Hypotheses

Wei-Yin Loh1,∗ and Wei Zheng2,∗

University of Wisconsin–Madison

Abstract: The size of the bootstrap test of hypotheses is studied for the
normal and exponential one and two-sample problems. It is found that the
size depends not only on the problem, but on the choice of test statistic and
the nominal level. In some special cases, the bootstrap test is UMP, but in
other cases, it can be totally useless, such as being completely randomized or
rejecting the null hypothesis with probability one. More importantly, the size
is usually greater than the nominal level, even in the limit as the sample size
goes to infinity.
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1. Introduction

Owing to its practical convenience and wide applicability, the bootstrap method
[7] is used to test statistical hypotheses in many research studies. A sample of re-
cent applications includes evolutionary molecular biology [1], genetic structure [2],
gene frequency [11], cancer epidemiology [8], microscopy [3], quality of life [12],
economic cycles [5], livestock management [9], and meat demand [6]. Despite its
popularity, however, there have been few detailed studies of the theoretical validity
of the bootstrap for hypothesis testing. This article addresses this issue for some
simple parametric problems where the bootstrap null distributions can be stud-
ied analytically. Specifically, we consider one and two-sample problems involving
normally and exponentially distributed observations. Our goal is to determine the
finite-sample or limiting sizes of the bootstrap tests and compare them with those
of the traditional tests.

First, we recall some definitions. Let Xn = (X1, X2, . . . , Xn) be a vector of
n independent observations from Fµ. In the bootstrap method, we first find an
estimate µ̂0 of µ under H0 and estimate Fµ with F̂ = Fµ̂0 . Given a test statistic S =
S(Xn) for which large values lead to rejection of H0, let Gµ denote the distribution
function of S. Let X∗n = (X∗1 , X

∗
2 , . . . , X

∗
n) be a vector of n independent observations

from F̂ and define S∗ = S(X∗n). The distribution function Ĝ = Gµ̂0 of S∗ is the
bootstrap distribution function of S, i.e., Ĝ is the distribution of S under F̂ .

For any nominal level of significance α (0 < α < 1), let cα(µ̂0) be the upper-α
quantile of Ĝ. Thus cα(µ̂0) is the smallest value such that Ĝ(cα(µ̂0)) ≥ 1− α. The
nominal level-α bootstrap test rejects H0 with probability 1 if S > cα(µ̂0), and
with probability [α − 1 + Ĝ(cα(µ̂0))]/[Ĝ(cα(µ̂0))− Ĝ(cα(µ̂0)−)] if S = cα(µ̂0) and
Ĝ(cα(µ̂0)) > Ĝ(cα(µ̂0)−).

2. Testing a Normal Mean

Let X1, X2, . . . , Xn be a random sample from N(µ, σ2), a normal distribution with
mean µ and variance σ2. Let φ(x) and Φ(x) denote the density and distribution
functions of the N(0, 1) distribution and let zα be its upper-α critical value, that
is, 1− Φ(zα) = α. Consider testing

(2.1) H0 : µ ≤ 0 vs. H1 : µ > 0.

imsart-coll ver. 2008/08/29 file: Loh.tex date: April 10, 2009



Bootstrap tests 95

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.1. Known Variance

We assume without loss of generality that σ2 = 1. Let X̄n = n−1
∑n
i=1Xi. The

unrestricted MLE of µ is µ̂ = X̄n. Let µ̂i be the MLE of µ under Hi (i = 0, 1).
Then µ̂0 = X̄nI(X̄n < 0), µ̂1 = X̄nI(X̄n > 0), and X∗1 , X

∗
2 , . . . , X

∗
n is a bootstrap

random sample drawn from N(µ̂0, 1). Let X̄∗n = n−1
∑n
i=1X

∗
i .

2.1.1. Sample Mean Statistic

Theorem 2.1. If 0 < α ≤ 1/2, the bootstrap test based on X̄n is uniformly most
powerful (UMP), but if 1/2 < α < 1, the test rejects H0 with probability 1.

Proof. Recall that the UMP test rejects H0 if X̄n ≥ zαn
−1/2. Since X̄∗n is normal

with mean µ̂0 and variance n−1, its critical value is cα(µ̂0) = µ̂0 + zαn
−1/2 =

X̄nI(X̄n < 0)+zαn
−1/2. Therefore the bootstrap test rejects H0 if X̄nI(X̄n > 0) ≥

zαn
−1/2. If 0 < α ≤ 1/2, then zα ≥ 0 and the bootstrap test is the UMP test. If

1/2 < α < 1, then zα < 0 and the test rejects H0 w.p.1.

2.1.2. Standard Likelihood Ratio Statistic

Given the data and values µ0 and µ1, let

L(µ0, µ1,Xn) = log

{
n∏

i=1

φ(xi − µ1)

/
n∏

i=1

φ(xi − µ0)

}
.

A general statistic for testing H0 is the log-likelihood ratio

L(µ̂0, µ̂,Xn) = log

{
sup
µ

n∏

i=1

φ(xi − µ)

/
sup
µ∈H0

n∏

i=1

φ(xi − µ)

}
.

Throughout this article, we let Z denote the standard normal variable and z+
α =

max(zα, 0). We need the following lemma whose proof is given in the Appendix.

Lemma 2.1. Let θ ≥ 0. For fixed 0 < α < 1, the function

(2.2) P (|Z + θ| > z+
α )− (1− α)E{Φ(Z + θ)−1 I(Z + θ > z+

α )}
is maximized at θ = 0 with maximum value

(2.3) min(2α, 1) + (1− α) log{1−min(α, 1/2)}
which is greater than α for all 0 < α < 1.

Theorem 2.2. The size of the bootstrap test based on the standard likelihood ratio
is min(2α, 1) + (1− α) log{1−min(α, 1/2)}.
Proof. Since

n−1L(µ̂0, µ̂,Xn) = X̄n(µ̂− µ̂0)− (µ̂2 − µ̂2
0)/2

= X̄n(X̄n − µ̂0)− (X̄2
n − µ̂2

0)/2
= (X̄n − µ̂0)2/2
= X̄2

nI(X̄n > 0)/2

the test rejects H0 if S = X̄nI(X̄n > 0) ≥ cα(µ̂0), where the critical value is to be
determined. Let S∗ = X̄∗nI(X̄∗n > 0) and consider two cases.
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1. X̄n > 0. Then S > 0, µ̂0 = 0, and X̄∗n has a N(0, n−1) distribution. For any
x ≥ 0, P (S∗ ≤ x) = P (X̄∗n ≤ x) = Φ(xn1/2). Therefore if 0 < α < 1/2,
cα(µ̂0) = zαn

−1/2. Otherwise, if α ≥ 1/2, then cα(µ̂0) = 0 and the bootstrap
test rejects H0 w.p.1. Thus for all 0 < α < 1, cα(µ̂0) = z+

α n
−1/2.

2. X̄n ≤ 0. Then S = 0, µ̂0 = X̄n ≤ 0, and S∗ has a N(X̄n, n
−1) distribution

left-truncated at 0 with P (S∗ = 0) = P (X̄∗n ≤ 0) = Φ(−n1/2X̄n). Thus

cα(µ̂0) =
{
X̄n + n−1/2zα, if X̄n + n−1/2zα > 0
0, if X̄n + n−1/2zα ≤ 0.

= (X̄n + n−1/2zα)+.

Since S = 0, the bootstrap test never rejects H0 if X̄n + n−1/2zα > 0.
Otherwise, the test is randomized and rejects H0 with probability {α − 1 +
Φ(−n1/2X̄n)}/Φ(−n1/2X̄n).

Thus for 0 < α < 1,

P{Reject H0} = P{Reject H0, X̄n > 0}+ P{Reject H0, X̄n < 0}
= P (S > z+

α , X̄n > 0)
+ P{Reject H0, X̄n + n−1/2zα ≤ 0, X̄n < 0}

= P (X̄n > z+
α n
−1/2)

+ E[{α− 1 + Φ(−n1/2X̄n)}/Φ(−n1/2X̄n)] I(−n1/2X̄n ≥ z+
α )

= P (|W | > z+
α )− (1− α)E{Φ(W )−1 I(W > z+

α )}

where W is normally distributed with mean −n1/2µ and variance 1. By Lemma 2.1,
the supremum of the rejection probability under H0 is attained when µ = 0 and is
given by (2.3). Figure 1 shows a plot of this function.

2.1.3. Cox Likelihood Ratio Statistic

Cox (1961) proposed the following alternative likelihood ratio statistic for testing
separate families of hypotheses:

L(µ̂0, µ̂1,Xn) = log

{
sup
H1

n∏

i=1

φ(xi − µ)

/
sup
H0

n∏

i=1

φ(xi − µ)

}
.

For the current problem,

L(µ̂0, µ̂1,Xn) = n{X̄n(µ̂1 − µ̂0)− (µ̂2
1 − µ̂2

0)/2}
= n(X̄n|X̄n| − X̄n|X̄n|/2)
= nX̄2

n sgn(X̄n)/2.

Therefore rejecting H0 for large values of L(µ̂0, µ̂1,Xn) is equivalent to rejecting
for large values of X̄n, and the next theorem follows directly from Theorem 2.1.

Theorem 2.3. If 0 < α ≤ 1/2, the bootstrap test based on the Cox likelihood ratio
has size α and is UMP. If 1/2 < α < 1, it rejects H0 with probability 1.
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Fig 1. Size (2.3) of bootstrap test for the normal mean based on the standard likelihood ratio, for
known σ. The dashed line is the identity function.

2.2. Unknown Variance

Now suppose we test the hypotheses (2.1) without assuming that σ is known. The
log-likelihood function is

l(µ, σ) = −n log σ −
∑

i

(Xi − µ)2/(2σ2)− (n/2) log(2π)

and its derivatives are ∂l/∂µ = −σ−2
∑

(Xi−µ) and ∂l/∂σ = −nσ−1+σ−3
∑

(Xi−
µ)2. Hence the unrestricted and restricted (under H0 and H1) maximum likelihood
estimates (MLEs) of µ and σ2 are, respectively,

µ̂ = X̄n σ̂2 = n−1
∑

(Xi − X̄n)2

µ̂0 = X̄nI(X̄n < 0) σ̂2
0 = n−1

∑
(Xi − µ̂0)2

µ̂1 = X̄nI(X̄n > 0) σ̂2
1 = n−1

∑
(Xi − µ̂1)2

giving the log-likelihood ratio statistics:

Standard: n log(σ̂0/σ̂) = (n/2) log{∑(Xi − µ̂0)2/
∑

(Xi − X̄n)2}
Cox: n log(σ̂0/σ̂1) = (n/2) log{∑(Xi − µ̂0)2/

∑
(Xi − µ̂1)2}.

The corresponding bootstrap tests rejectH0 for large values of
∑

(Xi−µ̂0)2/
∑

(Xi−
X̄n)2 and

∑
(Xi − µ̂0)2/

∑
(Xi − µ̂1)2, respectively.
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2.2.1. Standard Likelihood Ratio Statistic

Let

(2.4) Tn = n1/2X̄n

{∑
(Xi − X̄n)2/(n− 1)

}−1/2

.

The standard log-likelihood ratio statistic is
∑

(Xi − µ̂0)2∑
(Xi − X̄n)2

=
∑{Xi − X̄nI(X̄n < 0)}2∑

(Xi − X̄n)2

=
{

1, if X̄n < 0∑
X2
i /
∑

(Xi − X̄n)2, if X̄n ≥ 0

=
{

1, if X̄n < 0
1 + nX̄2

n/
∑

(Xi − X̄n)2, if X̄n ≥ 0

=
{

1, if X̄n < 0
1 + (n− 1)−1T 2

n , if X̄n ≥ 0.

Thus H0 is rejected for large values of S = TnI(Tn > 0). Let tν,δ denote the
noncentral t-distribution with ν degrees of freedom and noncentrality parameter δ
and let tν,δ,α denote its upper-α critical point.

Lemma 2.2. For any ν and α, tν,δ,α is an increasing function of δ.

Proof. Let Z denote a standard normal variable independent of χ2
ν . Since

P (tν,δ ≤ x) = P

(
Z + δ√
χ2
ν/ν
≤ x

)

= P

(
Z√
χ2
ν/ν
≤ x− δ√

χ2
ν/ν

)

we see that P (tν,δ ≤ x) is a decreasing function of δ. Therefore tν,δ,α is an increasing
function of δ.

Theorem 2.4. If σ is unknown, the size of the nominal level-α test of H0 : µ ≤ 0
vs. H1 : µ > 0 based on the standard likelihood ratio has lower bound

min(α, 1/2) + E




α− 1 + Φ

(
−tn−1

√
n/(n− 1)

)

Φ
(
−tn−1

√
n/(n− 1)

) I

(
tn−1

√
n

n− 1
< −z+

α

)


where tn−1 has a (central) t-distribution with n− 1 degrees of freedom. As n→∞,
the bound tends to (2.3), the size for the case where σ is known and n is finite.

Proof. Again, consider two cases.

1. X̄n > 0. Then S > 0 and µ̂0 = 0. The bootstrap distribution of T ∗n is a central
tn−1-distribution and that of S∗ is a central tn−1-distribution left-truncated
at 0. If 0 < α < 1/2, the test rejects H0 whenever Tn > tn−1,0,α. Otherwise,
if α ≥ 1/2, the test rejects H0 with probability 1.

2. X̄n < 0. Then S = 0, µ̂0 < 0, and S∗ has a left-truncated noncentral tn−1,δ-
distribution with n− 1 degrees of freedom and noncentrality parameter

(2.5) δ = n1/2µ̂0/σ̂0 = nX̄n/
√∑

(Xi − X̄n)2 = Tn
√
n/(n− 1)
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and probability P (X̄∗n ≤ 0) = P{n1/2(X̄∗n − µ̂0)/σ̂0 ≤ −n1/2µ̂0/σ̂0} = Φ(−δ)
at 0.
If tn−1,δ,α > 0, the bootstrap test does not reject H0 because S = 0. Other-
wise, if tn−1,δ,α ≤ 0, the test is randomized and rejects H0 with probability
{α− 1 + Φ(−δ)}/Φ(−δ). Note that the event tn−1,δ,α ≤ 0 occurs if and only
if α ≥ P (T ∗n > 0 | µ̂0, σ̂0). But

P (T ∗n > 0 | µ̂0, σ̂0) = P (X̄∗n > 0 | µ̂0, σ̂0) = 1− Φ(−δ).

Therefore tn−1,δ,α ≤ 0 if and only if δ ≤ −zα.

Let Pη,τ denote probabilities when µ = η and σ = τ . The size of the test for
0 < α < 1 is

sup
H0

Pµ,σ{Reject H0}

= sup
H0

[Pµ,σ{Reject H0, X̄n > 0}+ Pµ,σ{Reject H0, X̄n < 0}]

= sup
H0

Pµ,σ[{TnI(Tn > 0) > tn−1,0,α, X̄n > 0}

+ Pµ,σ{Reject H0, tn−1,δ,α ≤ 0, X̄n < 0}]
= sup

H0

[Pµ,σ{Tn > max(tn−1,0,α, 0)}

+ Eµ,σ[{α− 1 + Φ(−δ)}/Φ(−δ)] I{δ < min(−zα, 0)}]
≥ P0,1{Tn > max(tn−1,0,α, 0)}+ E0,1[{α− 1 + Φ(−δ)}/Φ(−δ) I{δ < −z+

α }]

= min(α, 1/2) + E





α− 1 + Φ
(
−tn−1

√
n
n−1

)

Φ
(
−tn−1

√
n
n−1

) I

(
tn−1

√
n

n− 1
< −z+

α

)




by equation (2.5). Since tn−1 → Z in distribution as n→∞, where Z is a standard
normal variable,

lim
n→∞

E





α− 1 + Φ
(
−tn−1

√
n
n−1

)

Φ
(
−tn−1

√
n
n−1

) I

(
tn−1

√
n

n− 1
< −z+

α

)




→ E

{
α− 1 + Φ(−Z)

Φ(−Z)
I(Z < −z+

α )
}

= (α− 1)
∫ −z+α
−∞

φ(z)/Φ(−z) dz + Φ(−z+
α )

= (α− 1)
∫ ∞

z+α

φ(z)/Φ(z) dz + min(α, 1/2)

= (1− α) log Φ(z+
α ) + min(α, 1/2)

= (1− α) log{max(1− α, 1/2)}+ min(α, 1/2)
= (1− α) log{1−min(α, 1/2)}+ min(α, 1/2)

Thus the limiting size is 2 min(α, 1/2) + (1− α) log{1−min(α, 1/2)} > α.

imsart-coll ver. 2008/08/29 file: Loh.tex date: April 10, 2009



100 W. Loh and W. Zheng

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

2.2.2. Cox Likelihood Ratio Statistic

Theorem 2.5. If σ2 is unknown, the size of the bootstrap test of (2.1) based on
the Cox likelihood ratio has lower bound

min(α, 1/2) + P (t
n−1,tn−1

√
n/(n−1),α

< tn−1 < 0) ≥ α.

Proof. The Cox log-likelihood ratio statistic is
∑

(Xi − µ̂0)2∑
(Xi − µ̂1)2

=
∑{Xi − X̄nI(X̄n < 0)}2∑{Xi − X̄nI(X̄n > 0)}2

=




{1 + (n− 1)T 2

n}−1, if X̄n < 0
1, if X̄n = 0
1 + (n− 1)T 2

n , if X̄n > 0

where Tn is defined in (2.4). Thus rejecting for large values of the statistic is equiv-
alent to rejecting for large values of S = Tn.

1. X̄n > 0. Then µ̂0 = 0, Tn > 0, and T ∗n has a central t-distribution with n− 1
degrees of freedom. Thus the test rejects H0 if Tn > tn−1,0,α. If 1/2 ≤ α < 1,
then tn−1,0,α ≤ 0 and the test rejects w.p.1.

2. X̄n < 0. Then µ̂0 < 0, Tn < 0, and T ∗n has a noncentral t-distribution with
n− 1 degrees of freedom and noncentrality parameter δ given in (2.5). Hence
H0 is rejected if Tn > tn−1,δ,α. Since Tn < 0, rejection occurs only if tn−1,δ,α <
0.

If 0 < α < 1/2,

sup
H0

Pµ,σ(Reject H0) = sup
H0

[Pµ,σ{Reject H0, X̄n > 0}

+ Pµ,σ{Reject H0, X̄n < 0}]
= sup

H0

[Pµ,σ(Tn > tn−1,0,α) + Pµ,σ(tn−1,δ,α < Tn < 0)]

≥ P0,1(Tn > tn−1,0,α) + P0,1(tn−1,δ,α < Tn < 0)
= α+ P (tn−1,δ,α < tn−1 < 0)
≥ α.

If 1/2 ≤ α < 1,

sup
H0

Pµ,σ(Reject H0) = sup
H0

[Pµ,σ{Reject H0, X̄n > 0}

+ Pµ,σ{Reject H0, X̄n < 0}]
= sup

H0

[Pµ,σ(X̄n > 0) + Pµ,σ(tn−1,δ,α < Tn < 0)]

≥ P0,1(X̄n > 0) + P0,1(tn−1,δ,α < Tn < 0)
= 1/2 + P (tn−1,δ,α < tn−1 < 0)
> 1/2 + P (tn−1,0,α < tn−1 < 0)
= α

by Lemma 2.2.
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3. Testing a Normal Variance, Mean Unknown

Let χ2
ν denote a chi-squared random variable with ν degrees of freedom, χ2

ν,α its
upper-α point, and Ψν(.) its cumulative distribution function.

Lemma 3.1. Ψn−1(n2/χ2
n−1,α)→ α and Ψn−1(n)→ 1/2 as n→∞.

Proof. Let Z1, Z2, . . . be independent N(0, 1) variables. Then

Ψn−1(n2/χ2
n−1,α) = P

(
n−1∑

i=1

Z2
i ≤ n2/χ2

n−1,α

)

= P

(∑n−1
i=1 (Z2

i − 1)√
2(n− 1)

≤
√
n− 1

2

{
n2

(n− 1)2χ2
n−1,α

− 1

})

≈ Φ

(
√

(n− 1)/2

{
n2

(n− 1)2χ2
n−1,α

− 1

})
as n→∞.

By the Wilson-Hilferty (1931) approximation, ν/χ2
ν,α = 1 − zα(2/ν)1/2 + o(ν−1).

Therefore
√

(n− 1)/2

{
n2

(n− 1)2χ2
n−1,α

− 1

}
→ −zα

which yields the first result. The second result is similarly proved.

Let Xn = (X1, X2, . . . , Xn) be a vector of n independent observations from
N(µ, σ2), with µ and σ unknown, and let σ̂2 = n−1

∑n
i=1(Xi − X̄n)2 denote the

unrestricted MLE of σ2.

3.1. H0 : σ2 ≤ 1 vs. H1 : σ2 > 1

Let σ̂2
i be the MLE of σ2 under Hi (i = 0, 1). Then σ̂2

0 = min(σ̂2, 1) and σ̂2
1 =

max(σ̂2, 1). Define the log-likelihood ratio

M(µ0, µ1, σ0, σ1,Xn) = log
(∏

i σ
−1
1 φ{σ−1

1 (xi − µ1)}∏
i σ
−1
0 φ{σ−1

0 (xi − µ0)}

)
.

3.1.1. Standard Likelihood Ratio Statistic

Theorem 3.1. The size of the bootstrap test based on the standard likelihood ratio
for testing H0 : σ2 ≤ 1 vs. H1 : σ2 > 1, with µ unknown, is bounded below by
(3.1)

min{α, 1−Ψn−1(n)}+E
[
α− 1 + Ψn−1(n2/χ2

n−1)
Ψn−1(n2/χ2

n−1)
I

{
χ2
n−1 ≤ min

(
n,

n2

χ2
n−1,α

)}]
.

Proof. The standard log-likelihood ratio statistic is M(µ̂, µ̂, σ̂0, σ̂,Xn) and

2n−1M(µ̂, µ̂, σ̂0, σ̂,Xn) = log(σ̂2
0 σ̂
−2) + σ̂2(σ̂−2

0 − σ̂−2)
= σ̂2σ̂−2

0 − log(σ̂2σ̂−2
0 )− 1

=
{

0, if σ̂2 ≤ 1
σ̂2 − log(σ̂2)− 1, otherwise.
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Since the function x− log(x)−1 increases monotonically from 0 for x > 1, rejecting
for large values of the statistic is equivalent to rejecting for large values of

S = nmax(σ̂2, 1) = max
{∑

(Xi − X̄n)2, n
}
.

Let S∗ denote the bootstrap version of S under resampling from N(X̄n, σ̂
2
0). To

find the critical point of the distribution of S∗, consider two cases.

1. σ̂2 > 1. Then S > n, σ̂2
0 = 1, and the distribution of S∗ is χ2

n−1 left-truncated
at n, i.e., it has probability mass Ψn−1(n) at n. If 0 < α < 1−Ψn−1(n), the
critical point of the bootstrap distribution is χ2

n−1,α. Otherwise, the critical
point is n and the test rejects H0 w.p.1.

2. σ̂2 ≤ 1. Then S = n, σ̂2
0 = σ̂2, and the distribution of S∗ is σ̂2χ2

n−1 left
truncated at n. Thus the test does not reject H0 if σ̂2χ2

n−1,α > n. On the
other hand, if σ̂2χ2

n−1,α ≤ n, then the critical point is n and the test rejects
H0 randomly with probability {α− 1 + Ψn−1(nσ̂−2

0 )}/Ψn−1(nσ̂−2
0 ).

Since α < 1−Ψn−1(n) if and only if n < χ2
n−1,α, we have

Pµ,σ(Reject H0, σ̂
2 > 1) =

{
Pµ,σ(S > χ2

n−1,α, nσ̂
2 > n), if n < χ2

n−1,α

Pµ,σ(nσ̂2 > n), otherwise

=
{
Pµ,σ(nσ̂2 > χ2

n−1,α), if n < χ2
n−1,α

Pµ,σ(nσ̂2 > n), otherwise

=
{

1−Ψn−1(σ−2χ2
n−1,α), if n < χ2

n−1,α

1−Ψn−1(nσ−2), otherwise

= 1−Ψn−1(σ−2 max{n, χ2
n−1,α}).

and

Pµ,σ(Reject H0, σ̂
2 ≤ 1) = Pµ,σ(Reject H0, σ̂

2χ2
n−1,α ≤ n, nσ̂2 ≤ n)

= Eµ,σ

[
α− 1 + Ψn−1(nσ̂−2

0 )
Ψn−1(nσ̂−2

0 )
I(σ̂2

0χ
2
n−1,α ≤ n, nσ̂2 ≤ n)

]

= E

[
α− 1 + Ψn−1(n2σ−2/χ2

n−1)
Ψn−1(n2σ−2/χ2

n−1)
I(χ2

n−1 ≤ σ−2 min{n, n2/χ2
n−1,α})

]
.

The choice σ2 = 1 yields the lower bound

sup
H0

Pµ,σ(Reject H0)

≥ Pµ,1(Reject H0, σ̂
2 > 1) + Pµ,1(Reject H0, σ̂

2 ≤ 1)
= 1−Ψn−1(max{n, χ2

n−1,α})

+ E

[
α− 1 + Ψn−1(n2/χ2

n−1)
Ψn−1(n2/χ2

n−1)
I

{
χ2
n−1 ≤ min

(
n,

n2

χ2
n−1,α

)}]

= min{α, 1−Ψn−1(n)}

+ E

[
α− 1 + Ψn−1(n2/χ2

n−1)
Ψn−1(n2/χ2

n−1)
I

{
χ2
n−1 ≤ min

(
n,

n2

χ2
n−1,α

)}]
.

Figure 2 shows graphs of the lower bound (3.1) for n = 5, 10, 100, and 500.
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Fig 2. Lower bounds (3.1) on the size of the bootstrap test of H0 : σ2 ≤ 1 vs. H1 : σ2 > 1 based
on the standard likelihood ratio, for n = 5, 10, 100, and 500. The 45-degree line is the identity
function.

3.1.2. Cox Likelihood Ratio Statistic

Theorem 3.2. If µ is unknown, the bootstrap test of H0 : σ2 ≤ 1 vs. H1 : σ2 > 1
based on the Cox likelihood ratio has size α and is UMP for χ2

n−1,α > n. It rejects
H0 w.p.1 for other values of α.

Proof. The Cox log-likelihood ratio statistic is M(µ̂, µ̂, σ̂0, σ̂1,Xn). Since

σ̂2
0 σ̂
−2
1 =

{
σ̂2, if σ̂2 ≤ 1
σ̂−2, if σ̂2 > 1

and

σ̂−2
0 − σ̂−2

1 =
{
σ̂−2 − 1, if σ̂2 ≤ 1
1− σ̂−2, if σ̂2 > 1

we have

2n−1M(µ̂, µ̂, σ̂0, σ̂1,Xn) = log(σ̂2
0 σ̂
−2
1 ) + σ̂2(σ̂−2

0 − σ̂−2
1 )

=
{

log(σ̂2)− σ̂2 + 1, if σ̂2 ≤ 1
− log(σ̂2) + σ̂2 − 1, if σ̂2 > 1

which is strictly increasing in σ̂2. Therefore rejecting for large values of the statistic
is equivalent to rejecting for large values of σ̂2. Since the bootstrap null distribution
of nσ̂2 is σ̂2

0χ
2
n−1, the bootstrap critical point of σ̂2 is n−1σ̂2

0χ
2
n−1,α. Thus the

bootstrap test rejects H0 if σ̂2 σ̂−2
0 > n−1χ2

n−1,α, or equivalently, max(σ̂2, 1) >
n−1χ2

n−1,α. If α is so large that n−1χ2
n−1,α ≤ 1, the bootstrap test rejects H0

regardless of the data. On the other hand, if n−1χ2
n−1,α > 1, the test rejects H0 if

σ̂2 > n−1χ2
n−1,α, which coincides with the UMP test [10, p. 88].
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3.2. H0 : σ2 ≥ 1 vs. H1 : σ2 < 1

Next suppose we reverse the hypotheses and test H0 : σ2 ≥ 1 versus H1 : σ2 < 1.
Then σ̂2

0 = max(σ̂2, 1) and σ̂2
1 = min(σ̂2, 1).

3.2.1. Standard Likelihood Ratio Statistic

Theorem 3.3. For any 0 < α < 1 and µ unknown, the size of the bootstrap test
for H0 : σ2 ≥ 1 vs. H1 : σ2 < 1, based on the standard likelihood ratio, is bounded
below by
(3.2)

min{α,Ψn−1(n)}+ E

[
α−Ψn−1(n2/χ2

n−1)
1−Ψn−1(n2/χ2

n−1)
I
(
χ2
n−1 ≥ max{n, n2/χ2

n−1,1−α}
)]
.

Proof. Direct computation yields

2n−1M(µ̂, µ̂, σ̂0, σ̂,Xn) =
{
σ̂2 − log(σ̂2)− 1, if σ̂2 ≤ 1
0, otherwise.

Since the function x − log(x) − 1 decreases monotonically for 0 < x ≤ 1, the test
rejects H0 for small values of S = nmin(σ̂2, 1). Let S∗ denote the bootstrap version
of S under resampling from N(X̄n, σ̂

2
0).

1. σ̂2 < 1. Then σ̂0 = 1 and the distribution of S∗ is χ2
n−1 right-truncated at

n, with probability mass 1−Ψn−1(n) there. If 0 < α < Ψn−1(n), the critical
point of the bootstrap distribution is χ2

n−1,1−α. Otherwise, the critical point
is n and the test rejects w.p.1, because S < n.

2. σ̂2 ≥ 1. Then σ̂2
0 = σ̂2, S = n and the distribution of S∗ is σ̂2χ2

n−1 right-
truncated at n. The test does not reject H0 if σ̂2χ2

n−1,1−α < n. Otherwise, if
σ̂2χ2

n−1,1−α ≥ n, the test rejects H0 with probability {α−Ψn−1(nσ̂−2)}/{1−
Ψn−1(nσ̂−2)}.

Since α < Ψn−1(n) if and only if χ2
n−1,1−α < n,

Pµ,σ(Reject H0, σ̂
2 < 1)

=
{
Pµ,σ(S < χ2

n−1,1−α, nσ̂
2 < n), if 0 < α < Ψn−1(n)

Pµ,σ(nσ̂2 < n), otherwise

=
{
Pµ,σ(nσ̂2 < χ2

n−1,1−α, nσ̂
2 < n), if 0 < α < Ψn−1(n)

Pµ,σ(nσ̂2 < n), otherwise

=
{
Pµ,σ(nσ̂2 < χ2

n−1,1−α), if 0 < α < Ψn−1(n)
Pµ,σ(nσ̂2 < n), otherwise

= Pµ,σ(nσ̂2 < min{χ2
n−1,1−α, n})

= Ψn−1(σ−2 min{χ2
n−1,1−α, n})

and

Pµ,σ(Reject H0, σ̂
2 ≥ 1)

= Pµ,σ(Reject H0, σ̂
2χ2

n−1,1−α ≥ n, σ̂2 ≥ 1)

= Eµ,σ

[
α−Ψn−1(nσ̂−2)
1−Ψn−1(nσ̂−2)

I(σ̂2χ2
n−1,1−α ≥ n, nσ̂2 ≥ n)

]

= E

[
α−Ψn−1(n2σ−2/χ2

n−1)
1−Ψn−1(n2σ−2/χ2

n−1)
I(σ2χ2

n−1 ≥ max{n, n2/χ2
n−1,1−α})

]
.
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Therefore

sup
H0

Pµ,σ(Reject H0)

≥ Ψn−1(min{χ2
n−1,1−α, n})

+ E

[
α−Ψn−1(n2/χ2

n−1)
1−Ψn−1(n2/χ2

n−1)
I(χ2

n−1 ≥ max{n, n2/χ2
n−1,1−α})

]

= min{α,Ψn−1(n)}

+ E

[
α−Ψn−1(n2/χ2

n−1)
1−Ψn−1(n2/χ2

n−1)
I(χ2

n−1 ≥ max{n, n2/χ2
n−1,1−α})

]
.

Figure 3 shows graphs of the lower bound (3.2) for n = 5, 10, 100, and 500.
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Fig 3. Lower bounds (3.2) on the size of the bootstrap test of H0 : σ2 ≥ 1 vs. H1 : σ2 < 1 based

on the standard likelihood ratio M
(1)
n . The 45-degree line is the identity function.

3.2.2. Cox Likelihood Ratio Statistic

Theorem 3.4. The bootstrap test of H0 : σ2 ≥ 1 vs. H1 : σ2 < 1 based on the
Cox likelihood ratio has size α and is UMP if χ2

n−1,α > n. Otherwise, it rejects H0

w.p.1.

Proof. Since

σ̂2
0 σ̂
−2
1 =

{
σ̂−2, if σ̂2 < 1
σ̂2, if σ̂2 ≥ 1

and

σ̂−2
0 − σ̂−2

1 =
{

1− σ̂−2, if σ̂2 < 1
σ̂−2 − 1, if σ̂2 ≥ 1
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we have

2n−1M(µ̂, µ̂, σ̂0, σ̂1,Xn) = log(σ̂2
0 σ̂
−2
1 ) + σ̂2(σ̂−2

0 − σ̂−2
1 )

=
{
− log(σ̂2) + σ̂2 − 1, if σ̂2 < 1
log(σ̂2)− σ̂2 + 1, if σ̂2 ≥ 1

a strictly decreasing function of σ̂2. Thus the test statistic rejects H0 for small
values of σ̂2. The bootstrap null distribution of σ̂2 is n−1σ̂2

0χ
2
n−1, with critical value

n−1σ̂2
0χ

2
n−1,1−α. Hence the bootstrap test rejects H0 if σ̂2 σ̂−2

0 < n−1χ2
n−1,1−α. But

the left side of the inequality is never greater than 1, because

σ̂2 σ̂−2
0 =

{
σ̂2, if σ̂2 < 1
1, otherwise.

Therefore, if α is so large that n−1χ2
n−1,1−α ≥ 1, the bootstrap test rejects H0

w.p.1. Otherwise, if n−1χ2
n−1,1−α < 1, the test rejects H0 if σ̂2 < n−1χ2

n−1,1−α,
which coincides with the classical UMP unbiased test [10, pp. 154].

4. Testing Difference of Two Normal Means

Let X1, . . . , Xm and Y1, . . . , Yn be independent random samples from N(µ, σ2) and
N(η, τ2), respectively, and N = m+ n > 2. We want to test

(4.1) H0 : η ≤ µ vs. H1 : η > µ.

The likelihood function for this case is

L(µ, τ)

= (2π)−(m+n)/2σ−mτ−n exp
{
−(2σ2)−1

∑
(Xi − µ)2 − (2τ2)−1

∑
(Yj − η)2

}

= (2π)−(m+n)/2σ−mτ−n exp{−(2σ2)−1
∑

(Xi − X̄m)2 − (2τ2)−1
∑

(Yj − Ȳn)2

−m(2σ2)−1(µ− X̄m)2 − n(2τ2)−1(η − Ȳn)2}

and the unrestricted MLE of (µ, η) is (µ̂, η̂) = (X̄m, Ȳn).

4.1. Known Variances

Let V = (mτ2X̄m + nσ2Ȳn)/(mτ2 + nσ2). The MLE of (µ, η) under H0 is

(µ̂0, η̂0) =
{

(X̄m, Ȳn), Ȳn ≤ X̄m

(V, V ), Ȳn > X̄m

and that under H1 is

(µ̂1, η̂1) =
{

(V, V ), Ȳn > X̄m

(X̄m, Ȳn), Ȳn ≤ X̄m.

4.1.1. Difference of Means Statistic

Theorem 4.1. The size of the bootstrap test of (4.1) based on Ȳn − X̄m is α if
α < 1/2 and is 1 if α ≥ 1/2.
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Proof. Let S = Ȳn − X̄m. The bootstrap test statistic S∗ = Ȳ ∗n − X̄∗m has a normal
distribution with mean η̂0 − µ̂0 = S I(S < 0) and variance m−1σ2 + n−1τ2. Thus
its nominal level-α bootstrap critical value is S I(S < 0) + zα{m−1σ2 + n−1τ2}1/2
and the rejection region is max(S, 0) > zα{m−1σ2 + n−1τ2}1/2. Clearly, the size of
the test is attained at the boundary µ = η. If α < 1/2, the probability of rejecting
H0 when µ = η is exactly α. On the other hand, if α ≥ 1/2, then zα ≤ 0 and the
test rejects H0 w.p.1.

4.1.2. Standard Likelihood Ratio Statistic

Theorem 4.2. The size of the bootstrap test of (4.1) based on the standard likeli-
hood ratio is min(2α, 1) + (1− α) log{1−min(α, 1/2)} > α.

Proof. The log-likelihood ratio statistic is

log{L(µ̂, τ̂)/L(µ̂0, τ̂0)}
= {m(2σ2)−1(V − X̄m)2 + n(2τ2)−1(V − Ȳn)2}I(Ȳn > X̄m)
= mn(mτ2 + nσ2)−2(Ȳn − X̄m)2 I(Ȳn > X̄m).

Thus the test statistic is equivalent to S = (Ȳn − X̄m) I(Ȳn > X̄m). The bootstrap
distribution of S∗ is normal with mean η̂0 − µ̂0 and variance n−1τ2 +m−1σ2, left-
truncated at 0 with P (S∗ = 0) = Φ{(µ̂0 − η̂0)(n−1τ2 + m−1σ2)−1/2}. Let δ =
(µ− η)(n−1τ2 +m−1σ2)−1/2 and W = (X̄m − Ȳn)(n−1τ2 +m−1σ2)−1/2 ∼ N(δ, 1).
We consider two cases.

1. Ȳn ≤ X̄m. Then S = 0, η̂0−µ̂0 = Ȳn−X̄m, and Φ(W ) ≥ 1/2. If 1−Φ(W ) < α,
the test is randomized and rejects H0 with probability {α−1+Φ(W )}/Φ(W ).
Otherwise, if 1− Φ(W ) ≥ α, the test does not reject H0.

2. Ȳn > X̄m. Then S = Ȳn − X̄m > 0, η̂0 − µ̂0 = 0, and P (S∗ = 0) = 1/2. If
α < 1/2, then the test rejects H0 if Ȳn − X̄m > zα(n−1τ2 +m−1σ2)−1/2, i.e.,
W < −zα. Otherwise, if α ≥ 1/2, then the critical value is 0 and the test
rejects w.p.1.

Therefore

P (Reject H0)
= P (Reject H0, Ȳn ≤ X̄m, 1− Φ(W ) < α)

+ P (Reject H0, Ȳn > X̄m) I(α < 1/2) + P (Reject H0, Ȳn > X̄m) I(α ≥ 1/2)
= E[Φ(W )−1{α− 1 + Φ(W )} I(W > z+

α )]
+ P (W < −zα) I(α < 1/2) + P (W < 0) I(α > 1/2)

= E[Φ(W )−1{α− 1 + Φ(W )} I(W > z+
α )] + P (W < −z+

α )

and the result follows from Lemma 2.1.

4.1.3. Cox Likelihood Ratio Statistic

Theorem 4.3. The bootstrap test of (4.1) based on the Cox likelihood ratio statistic
is the same as that based on the difference of sample means; its size is α if α < 1/2
and is 1 if α ≥ 1/2.
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Proof. The Cox log-likelihood ratio statistic is

log
{
L(µ̂1, τ̂1)
L(µ̂0, τ̂0)

}
=
mn(Ȳn − X̄m)2

2(mτ2 + nσ2)
{I(Ȳn > X̄m)− I(Ȳn ≤ X̄m)}.

Thus the test statistic is equivalent to S = Ȳn − X̄m and the result follows from
Theorem 4.1.

4.2. Unknown but Equal Variances

Suppose that τ2 = σ2 but their value is unknown. Then the likelihood function is

L(µ, τ, σ) = (2πσ2)−N/2 exp


−(2σ2)−1




∑

i

(Xi − µ)2 +
∑

j

(Yj − η)2








giving the unrestricted MLE

(µ̂, η̂, σ̂2) =


X̄m, Ȳn, N

−1




∑

i

(Xi − X̄m)2 +
∑

j

(Yj − Ȳn)2






 .

Let V = N−1(mX̄m + nȲn) and

σ̃2 = N−1




∑

i

(Xi − V )2 +
∑

j

(Yj − V )2





= σ̂2 +mnN−2(Ȳn − X̄m)2.

The corresponding MLEs under H0 and H1 are, respectively,

(µ̂0, η̂0, σ̂
2
0) =

{
(X̄m, Ȳn, σ̂

2), if Ȳn < X̄m

(V, V, σ̃2), if Ȳn ≥ X̄m

(µ̂1, η̂1, σ̂
2
1) =

{
(V, V, σ̃2), if Ȳn < X̄m

(X̄m, Ȳn, σ̂
2), if Ȳn ≥ X̄m.

4.2.1. Difference of Means Statistic

Suppose S = Ȳn − X̄m. Then S∗ = Ȳ ∗n − X̄∗m has a normal distribution with mean
η̂0 − µ̂0 and variance N(mn)−1σ̂2

0 . Let Υν denote the t distribution function with
ν degrees of freedom and let s2 = σ̂2N(N − 2)−1 be the usual unbiased estimate of
σ2.

Theorem 4.4. The size of the bootstrap test of (4.1) based on Ȳn − X̄m is

sup
H0

P (Reject H0)

=





0, if α ≤ 1− Φ(
√
N)

1−ΥN−2

(
zα
√

N−2
N−z2α

)
, if 1− Φ(

√
N) < α < 1/2

1, if α ≥ 1/2

(4.2)

→
{
α, if α < 1/2
1, if α ≥ 1/2

as N →∞.
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Proof. The hypothesis H0 is rejected if

Ȳn − X̄m > η̂0 − µ̂0 + zασ̂0

√
N/(mn)

=
{
Ȳn − X̄m + zασ̂

√
N/(mn), if Ȳn < X̄m

zασ̃
√
N/(mn), if Ȳn ≥ X̄m.

1. α < 1/2. If Ȳn < X̄m, the test does not reject H0. Otherwise, if Ȳn ≥ X̄m,
the test rejects H0 if

(Ȳn − X̄m)2 > z2
ασ̃

2N/(mn)
⇐⇒ (Ȳn − X̄m)2(1−N−1z2

α) > Nz2
ασ̂

2/(mn)

⇐⇒ α > 1− Φ(
√
N) and

√
mn

N

Ȳn − X̄m

s
>

√
N − 2
N − z2

α

.

Therefore if α ≤ 1 − Φ(
√
N), the test does not reject H0. Otherwise, if 1 −

Φ(
√
N) < α < 1/2, the rejection probability is maximized when η = µ at

1−ΥN−2

(
zα
√

(N − 2)/(N − z2
α)
)

.
2. α ≥ 1/2. The test rejects H0 w.p.1 because zα < 0.

Hence the result (4.2). The limit is due to Υν(x) → Φ(x) as ν → ∞, for every x.
Figure 4 plots the size function (4.2) for N = 3, 5, 10, and 100.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2
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Nominal α

S
iz

e

N = 3
N = 5
N = 10
N = 100

Fig 4. Size of bootstrap test for a difference of normal means based on the difference of sample
means, for equal but unknown variances (4.2). The 45-degree line is the identity function.
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4.2.2. Standard Likelihood Ratio Statistic

The log-likelihood ratio statistic is

(N/2) log(σ̃2/σ̂2) I(Ȳn > X̄m) = (N/2) log{1+mnN−2(Ȳn−X̄m)2σ̂−2} I(Ȳn > X̄m)

which is equivalent to the positive part of the t-statistic:

S =
√
mn/Ns−1(Ȳn − X̄m)+.

Theorem 4.5. The size of the bootstrap test of (4.1) based on the standard likeli-
hood ratio is bounded below by

min(α, 1/2)+E



α− 1 + Φ

(√
N/(N − 2) tN−2

)

Φ
(√

N/(N − 2) tN−2

) I
(√

N/(N − 2) tN−2 ≥ z+
α

)



→ min(2α, 1) + (1− α) log{1−min(α, 1/2)}, N →∞.
Proof. We again consider two situations.

1. Ȳn > X̄m. The bootstrap distribution of S∗ is a tN−2 distribution left-
truncated at 0 with probability 1/2. If α < 1/2, then the test rejects H0

if S > tN−2,α. Otherwise, if α ≥ 1/2, the test rejects H0 w.p.1.
2. Ȳn ≤ X̄m. The bootstrap distribution of S∗ consists of the positive part of

a noncentral t with N − 2 degrees of freedom and noncentrality parameter
δ =

√
mn/N σ̂−1(Ȳn − X̄m) = S

√
N/(N − 2) and probability at 0 equal to

Φ(−δ). Since S = 0, the test does not reject H0 if α < 1−Φ(−δ) ⇐⇒ −δ <
zα. Otherwise, if −δ ≥ zα, then the test is randomized, rejecting H0 with
probability {α− 1 + Φ(−δ)}/Φ(−δ).

Thus

P (Reject H0)
= P (S > tN−2,α, Ȳn > X̄m) I(α < 1/2) + P (Ȳn > X̄m) I(α ≥ 1/2)

+ P (Reject H0, −δ ≥ zα, Ȳn ≤ X̄m)
= P (S > tN−2,α) I(α < 1/2) + (1/2)I(α ≥ 1/2)

+ E

{
α− 1 + Φ(−δ)

Φ(−δ) I(−δ ≥ zα, Ȳn ≤ X̄m)
}

= min(α, 1/2) + E

{
α− 1 + Φ(−δ)

Φ(−δ) I(−δ ≥ zα, Ȳn ≤ X̄m)
}

= min(α, 1/2) + E

{
α− 1 + Φ(−δ)

Φ(−δ) I(−δ ≥ z+
α )
}
.

Evaluating this probability at µ = η yields

sup
H0

P (Reject H0)

≥ min(α, 1/2)

+ E



α− 1 + Φ

(√
N/(N − 2) tN−2

)

Φ
(√

N/(N − 2) tN−2

) I
(√

N/(N − 2) tN−2 ≥ z+
α

)



→ min(2α, 1) + (1− α) log{1−min(α, 1/2)

as N →∞ by Lemma 2.1.
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4.2.3. Cox Likelihood Ratio Statistic

Theorem 4.6. The size of the bootstrap test of (4.1) based on the Cox likelihood
ratio or the ordinary t-statistic is

P (t
N−2,tN−2

√
N/(N−2), α

< tN−2 < 0) + P (tN−2 > t+N−2,α) ≥ α.

Proof. The Cox log-likelihood ratio simplifies to

(N/2) log{1 +mn(Ȳn − X̄m)2N−2σ̂−2}{(I(Ȳn ≥ X̄m)− I(Ȳn < X̄m)}

which is an increasing function of the Student t statistic S =
√
mn/Ns−1(Ȳn−X̄m).

The bootstrap distribution of S is a noncentral tN−2,δ with N−2 degrees of freedom
and noncentrality parameter

δ =
√
mn/Nσ̂−1

0 (η̂0 − µ̂0)

=
{ √

mn/Nσ̂−1(Ȳn − X̄m), if Ȳn < X̄m

0, if Ȳn ≥ X̄m

=
{ √

N/(N − 2)S, if Ȳn < X̄m

0, if Ȳn ≥ X̄m.

Therefore

P (Reject H0) = P (S > tN−2,δ,α, Ȳn < X̄m) + P (S > tN−2,α, Ȳn ≥ X̄m)
= P (tN−2,δ,α < S < 0) + P (S > t+N−2,α).

Evaluating the probabilities at µ = η yields

sup
H0

P (Reject H0) ≥ P (t
N−2,tN−2

√
N/(N−2),α

< tN−2 < 0) + P (tN−2 > t+N−2,α)

≥ P (tN−2,0,α < tN−2 < 0) + min(α, 1/2)
= (α− 1/2) I(α > 1/2) + min(α, 1/2)
= α.

5. Testing an Exponential Location Parameter

Let Exp(θ, τ) denote the distribution with density τ−1 exp{−τ−1(x − θ)}, x ≥ θ.
We consider testing hypotheses about θ with τ = 1. The likelihood for a sample
X1, . . . , Xn from an Exp(θ,1) distribution is

∏
exp{−(xi − θ)}I(x(1) ≥ θ), where

x(1) is the smallest order statistic. The unconstrained MLE is θ̂ = X(1).

5.1. H0 : θ ≤ 0 vs. H1 : θ > 0

The MLE of θ is θ̂0 = min(X(1), 0) and θ̂1 = max(X(1), 0) under H0 and H1,
respectively. Given X(1), the bootstrap data are independent observations from an
Exp(θ̂0, 1) distribution.
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5.1.1. Standard Likelihood Ratio Statistic

The standard log-likelihood ratio statistic is

S =
n∑

i=1

log

[
exp{−(Xi − θ̂)}I(X(1) ≥ θ̂)

exp{−(Xi − θ̂0)}I(X(1) ≥ θ̂0)

]

= n(θ̂ − θ̂0)

=
{

0, X(1) ≤ 0
nX(1), X(1) ≥ 0.

Given θ̂0, the bootstrap distribution of S is Exp(nθ̂0, 1), left-truncated at 0 with
probability mass 1− exp(nθ̂0) there.

1. X(1) ≥ 0. Then S = nX(1), θ̂0 = 0, the distribution of S∗ is Exp(0, 1) with
upper-α critical point log(1/α), and the test rejects H0 if nX(1) > − logα.

2. X(1) ≤ 0. Then S = 0, θ̂0 = X(1), and the distribution of S∗ is Exp(nX(1), 1),
left-truncated at 0 with probability 1− exp(nX(1)) there. If α < exp(nX(1)),
the test never rejects H0. Otherwise, the test rejects H0 with probability
{α− exp(nX(1))}/{1− exp(nX(1))}.

Since nX(1) has an Exp(nθ, 1) distribution,

Pθ{Reject H0}
= Pθ{Reject H0, X(1) ≥ 0}+ Pθ{Reject H0, X(1) < 0}
= Pθ(nX(1) > − logα, X(1) ≥ 0)

+ Pθ{Reject H0, X(1) < 0, exp(nθ) < exp(nX(1)) ≤ α}

= Pθ(nX(1) > − logα) + Eθ

[
α− exp(nX(1))
1− exp(nX(1))

I(nθ < nX(1) ≤ logα)
]

=
{
α exp(nθ), nθ ≥ logα
α exp(nθ) +

∫ logα

nθ
{α− exp(y)} exp(nθ − y)/{1− exp(y)} dy, nθ ≤ logα.

Now for nθ < logα,
∫ logα

nθ

α− exp(y)
1− exp(y)

exp{−(y − nθ)} dy

= exp(nθ)
∫ α

exp(nθ)

α− z
z2(1− z) dz

= exp(nθ)
∫ α

exp(nθ)

[αz−2 − (1− α){z−1 + (1− z)−1}] dz

= exp(nθ)
[
−αz−1 + (1− α){log(1− z)− log z}

]α
exp(nθ)

= exp(nθ)[(1− α) log(α−1 − 1)− 1 + α exp(−nθ)− (1− α) log{exp(−nθ)− 1}].
Therefore

Pθ{Reject H0} =
{
α exp(nθ), nθ ≥ logα
gα(exp(nθ)), nθ ≤ logα

where

gα(z) = α+ z(1− α)[log(α−1 − 1)− log(z−1 − 1)− 1], 0 < z < α.

Since limz→0 gα(z) = α, limz→α gα(z) = α2, and g′′α(z) > 0 for 0 < z < α, we
conclude that supH0

Pθ{Reject H0} = limθ→−∞ gα(exp(nθ)) = α.
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5.1.2. Cox Likelihood Ratio Statistic

The Cox log-likelihood ratio statistic is

S =
n∑

i=1

log

[
exp{−(Xi − θ̂1)}I(X(1) ≥ θ̂1)

exp{−(Xi − θ̂0)}I(X(1) ≥ θ̂0)

]

=
{
−∞, X(1) < 0
nX(1), X(1) ≥ 0.

It follows that the bootstrap test behaves the same as that based on the standard
likelihood ratio. We therefore have the following theorem.

Theorem 5.1. For testing H0 : θ ≤ 0 vs. H1 : θ > 0 for a sample from an Exp(θ,
1) distribution, the bootstrap tests based on the standard and Cox likelihood ratios
have size α.

5.2. H0 : θ ≥ 0 vs. H1 : θ < 0

The MLEs under H0 and H1 are θ̂0 = max(X(1), 0) and θ̂1 = min(X(1), 0), respec-
tively.

5.2.1. Standard Likelihood Ratio Statistic

Theorem 5.2. The bootstrap test of H0 : θ ≥ 0 vs. H1 : θ < 0 based on the
standard likelihood ratio test is completely randomized.

Proof. The standard log-likelihood ratio statistic is

S =
n∑

i=1

log

[
exp{−(Xi − θ̂)}I(X(1) ≥ θ̂)

exp{−(Xi − θ̂0)}I(X(1) ≥ θ̂0)

]

=
{
∞, X(1) < 0
0, X(1) ≥ 0.

Since θ̂0 ≥ 0, the distribution of S∗ is degenerate at 0. On the other hand, S = 0
w.p.1 under H0. Therefore the bootstrap test based on S is completely randomized.

5.2.2. Cox Likelihood Ratio Statistic

Theorem 5.3. The bootstrap test of H0 : θ ≥ 0 vs. H1 : θ < 0 based on the Cox
likelihood ratio test rejects H0 w.p.1 for any 0 < α < 1.

Proof. The Cox log-likelihood ratio statistic is

S =
n∑

i=1

log

[
exp{−(Xi − θ̂1)}I(X(1) ≥ θ̂1)

exp{−(Xi − θ̂0)}I(X(1) ≥ θ̂0)

]

=
{ ∞, X(1) < 0
n(θ̂1 − θ̂0), X(1) ≥ 0

=
{
∞, X(1) < 0
−nX(1), X(1) ≥ 0.
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1. X(1) < 0. Then θ̂0 = 0, the bootstrap data have an Exp(0, 1) distribution,
and the distribution of S∗ is the negative of an Exp(0, 1) distribution. Since
S =∞, the test rejects H0 w.p.1 for any 0 < α < 1.

2. X(1) ≥ 0. Then θ̂0 > 0, and the bootstrap data have an Exp(X(1), 1) distribu-
tion. The distribution of S∗ is the negative of an Exp(nX(1), 1) distribution,
with support (−∞,−nX(1)). Since S = −nX(1), the test rejects H0 w.p.1 for
any 0 < α < 1.

6. Conclusion

The results show that the size of the bootstrap test of hypotheses is unpredictable.
It depends on the problem as well as the choice of test statistic. For example, in the
case of testing a normal mean with known variance, the test based on the sample
mean or the Cox likelihood ratio is UMP for 0 < α ≤ 1/2, but it is sub-optimal
when it is based on the standard likelihood ratio. On the other hand, if α > 1/2,
the test often rejects H0 w.p.1. The overall conclusion is that the size of the test is
typically larger than its nominal level. This may explain the high power that the
test is found to possess in simulation experiments.

Appendix

Proof of Lemma 2.1.

First note that

(6.1) φ(x)− φ(x− θ)
{
> 0, if x < θ/2
< 0, if x > θ/2.

Let f(θ) denote the function (2.2). We consider two cases.

1. α ≥ 1/2. Since z+
α = 0, we have f(θ) = 1− (1− α)

∫∞
0
φ(x− θ)/Φ(x) dx and

f(0)− f(θ)
1− α =

∫ ∞

0

φ(x− θ)− φ(x)
Φ(x)

dx

=
∫ θ/2

0

φ(x− θ)− φ(x)
Φ(x)

dx+
∫ ∞

θ/2

φ(x− θ)− φ(x)
Φ(x)

dx

≥ 2
∫ θ/2

0

{φ(x− θ)− φ(x)} dx+
∫ ∞

θ/2

{φ(x− θ)− φ(x)} dx

= 2{Φ(−θ/2)− Φ(−θ)− Φ(θ/2) + 1/2} − Φ(−θ/2) + Φ(θ/2)
= 2{Φ(θ)− Φ(θ/2)}
≥ 0

where we use (6.1) in the first inequality. Hence

f(θ) ≤ f(0)

= 1− (1− α)
∫ ∞

0

φ(x)/Φ(x) dx

= 1 + (1− α) log(1/2).
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2. α < 1/2. Write f(θ) = J1(θ) + J2(θ), where

J1(θ) = α(1− α)−1Φ(θ − zα) + Φ(−zα − θ)

J2(θ) = E

{
(1− 2α)Φ(Z + θ)− (1− α)2

(1− α)Φ(Z + θ)
I(Z + θ ≥ zα)

}
.

Since

∂J1(θ)/∂θ = α(1− α)−1φ(θ − zα)− φ(θ + zα)
= φ(θ + zα){α(1− α)−1 exp(2θzα)− 1},

J1(θ) is decreasing-increasing, with minimum at θ0 = (2zα)−1 log{(1−α)/α} >
0. Further, J1(0) = limθ→∞ J1(θ) = α(1− α)−1. Therefore J1(θ) < J1(0) for
θ > 0.
To obtain a similar result for J2, let

g(x) = {(1− 2α)Φ(x)− (1− α)2}/{(1− α)Φ(x)}

which is increasing in x with g(zα) = −α/(1 − α) and g(x) → −α2/(1 − α)
as x→∞. Hence g(x) < 0 for x ≥ zα.

(a) 0 < θ ≤ 2zα. Since φ(x) ≤ φ(x− θ) for x ≥ zα,

J2(0)− J2(θ) =
∫ ∞

zα

g(x)φ(x) dx−
∫ ∞

zα

g(x)φ(x− θ) dx ≥ 0.

(b) θ > 2zα. From (6.1),

J2(0)− J2(θ)

=
∫ ∞

zα

g(x)φ(x) dx−
∫ ∞

zα

g(x)φ(x− θ) dx

=
∫ θ/2

zα

g(x)[φ(x)− φ(x− θ)] dx+
∫ ∞

θ/2

g(x)[φ(x)− φ(x− θ)] dx

> − α

1− α

∫ θ/2

zα

[φ(x)− φ(x− θ)] dx− α2

1− α

∫ ∞

θ/2

[φ(x)− φ(x− θ)] dx

= α(1− α)−1[−{Φ(θ/2)− (1− α)− Φ(−θ/2) + Φ(zα − θ)}
+ α{Φ(θ/2)− Φ(−θ/2)}]

= α(1− α)−1{K1(θ) +K2(θ)}

where

K1(θ) = Φ(−θ/2)− Φ(zα − θ)
K2(θ) = 1− α− Φ(θ/2) + αΦ(θ/2)− αΦ(−θ/2).

Now K1(θ) > 0 for θ > 2zα, K ′2(θ) = (α−1/2)φ(θ/2) < 0, and K2(θ)→
0 as θ →∞. Thus J2(0)− J2(θ) ≥ 0.

Therefore f(θ) ≤ f(0) = 2Φ(−zα) − (1 − α)
∫∞
zα
φ(x)/Φ(x) dx = 2α + (1 −

α) log(1− α).

It remains to show that f(0) > α for all 0 < α < 1. Let h(α) = f(0)− α. Then

h(α) =
{
α+ (1− α) log(1− α), if 0 < α ≤ 1/2
1− α− (1− α) log 2, if 1/2 ≤ α < 1
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and h is continuous with h(0) = h(1) = 0, h(1/2) = (1− log 2)/2 > 0, and

h′(α) =
{
− log(1− α) > 0, if 0 < α ≤ 1/2
−1 + log 2 < 0, if 1/2 ≤ α < 1.

Therefore h(α) > 0 for 0 < α < 1, concluding the proof.

References
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Nonparametric Estimation for Lévy

Models Based on Discrete-Sampling

José E. Figueroa-López1,∗

Purdue University

Abstract: A Lévy model combines a Brownian motion with drift and a pure-
jump homogeneous process such as a compound Poisson process. The estima-
tion of the Lévy density, the infinite-dimensional parameter controlling the
jump dynamics of the process, is studied under a discrete-sampling scheme.
In that case, the jumps are latent variables whose statistical properties can
in principle be assessed when the frequency of observations increase to in-
finity. We propose nonparametric estimators for the Lévy density following
Grenander’s method of sieves. The associated problem of selecting a suitable
approximating sieve is subsequently investigated using regular piece-wise poly-
nomials as sieves and assuming standard smoothness conditions on the Lévy
density. By sampling the process at a high enough frequency relative to the
time horizon T , we show that it is feasible to choose the dimension of the
sieve so that the rate of convergence of the risk of estimation off the origin
is the best possible from a minimax point of view, and even if the estimation
were based on the whole sample path of the process. The sampling frequency
necessary to attain the optimal minimax rate is explicitly identified. The pro-
posed method is illustrated by simulation experiments in the case of variance
Gamma processes.
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1. Introduction

1.1. Motivation and Some Background

In the last decade, Lévy processes have received a great deal of attention, fueled
by numerous applications in the area of mathematical finance, to the extend that
Lévy processes have become a fundamental building block in the modeling of asset
prices with jumps (see e.g. [11] and [30]). The simplest of these models postulates
that the price of a commodity (say a stock) at time t is determined by

(1.1) St := S0e
Xt ,

where X := {Xt}t≥0 is a Lévy process. Even this simple extension of the classical
Black-Scholes model, in which X is simply a Brownian motion with drift, is able
to account for some fundamental empirical features commonly observed in time
series of asset returns such as heavy tails, high-kurtosis, and asymmetry. More re-
cently, other Lévy based models have been proposed to account for more stylized
features of stock prices. These models include exponential time-changed Lévy pro-
cesses (cf. [7]-[9]), and stochastic differential equations driven by multivariate Lévy
processes (cf. [1], [31]). Lévy processes, as models capturing some of the most impor-
tant features of returns and as “first-order approximations” to other more accurate
models, should be considered first in developing and testing a successful statistical
methodology. However, even in such parsimonious models, there are several issues
in performing statistical inference by standard likelihood-based methods.

A Lévy process is the “discontinuous sibling” of a Brownian motion. Concretely,
X = {Xt}t≥0 is a Lévy process if X has independent and stationary increments,
its paths are right-continuous with left limits, and it has no fixed jump times. The
later condition means that, for any t > 0,

P [∆Xt 6= 0] = 0,

where ∆Xt := X(t) − lims↗tXs is the magnitude of the “jump” of X at time t.
It can be proved that the only Lévy process with continuous paths is essentially
the Brownian motion W := {Wt}t≥0 up to a drift term bt (hence, the well-known
Gaussian distribution of the increments of W is a byproduct of the stationarity
and independence of its increments). The only deterministic Lévy process is of the
form Xt := bt, for a constant b. Another distinguished type of Lévy process is a
compound Poisson process defined as

(1.2) Yt :=
Nt∑

i=1

ξi,

where N is a homogeneous Poisson process and the random variables ξi, i ≥ 1, are
mutually independent from one another, independent from N , and with common
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distribution ρ. The process N dictates the jump times, which can occur “homoge-
neously” across time with an (average) intensity of λ jumps per unit time, while
the sequence {ξi}i≥1 determines the sizes of the jumps.

It turns out that the most general Lévy process is the superposition of a Brownian
motion with drift, σWt + bt, a compound Poisson process, and the limit process
resulting from making the jump intensity of a compensated compound Poisson
process, Yt − EYt, to go to infinity while simultaneously allowing jumps of smaller
sizes. The latter limiting process is governed by a measure ν such that the intensity
of jumps is λε := ν(ε ≤ |x| < 1), the common distribution of the jump sizes
is ρε(dx) := 1{|x|≥ε}ν(dx)/λε, and the limit is when ε ↘ 0. For such a limit to
converge to a “steady” process it must hold that

∫

{|x|<1}
x2ν(dx) <∞.

The previous fundamental decomposition of a Lévy process is called the Lévy-Itô
decomposition (see Section 19 in [29] for the details).

In summary, Lévy processes are determined by three “parameters”: a non-
negative real σ2, a real b, and a measure ν on R\{0} such that

∫
(x2∧1)ν(dx) <∞.

The measure ν controls the jump dynamics of the process X in that for any
A ∈ B(R) whose indicator χA vanishes in a neighborhood of the origin,

ν(A) =
1
t

E


∑

s≤t
χ
A

(∆X(s))


 ,

for any t > 0 (see Section 19 of [29]). Thus, ν(A) gives the average number of jumps
(per unit time) whose magnitudes fall in the set A. A common assumption in Lévy-
based financial models is that ν is determined by a function s : R\{0} → [0,∞),
called the Lévy density, as follows

ν(A) =
∫

A

s(x)dx, ∀A ∈ B(R\{0}).

Intuitively, the value of s at x0 provides information on the frequency of jumps with
sizes “close” to x0. In the case of the compound Poisson process (1.2), the Lévy
measure is ν(dx) = λρ(dx).

By allowing a general Lévy process X in (1.1), instead of just a Brownian motion
with drift as in the Black-Scholes model, one can incorporate two very appealing
features: sudden changes in the price dynamics and some freedom in the distribution
for the log return log{St/Ss} = Xt−Xs. The possible distributions belong to the so-
called class of infinitely-divisible distributions, a very rich class which include most
known parametric families of distributions. We recall that an infinitely divisible
distribution µ is characterized by the so-called Lévy-Khinchin representation of its
characteristic function.

There are two key properties of a Lévy process that are exploited in this work.
The first property relates ν with the short-term moments of Xt. Concretely, if ϕ is
ν-continuous, bounded, and vanishing in a neighborhood of the origin, then

(1.3) lim
∆→0

1
∆

Eϕ(X∆) =
∫
ϕ(x)ν(dx) =

∫
ϕ(x)s(x)dx.

The limiting relation (1.3) is straightforward when X is a compound Poisson pro-
cess. A proof of (1.3) for a general Lévy process can be found in [29] (see his
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Corollary 8.9). Let us remark that (1.3) is also valid for certain unbounded func-
tions ϕ, which does not necessarily vanish in a neighborhood of the origin, but
rather converge to 0 at a proper rate (see [15] for more details). The second key
property is related to the decomposition of X into two independent processes: one
accounting for the “small” jumps and a compound Poisson process collecting the
“big” jumps. Concretely, let

X̃ε
t :=

∑

s≤t
∆Xs1{|∆Xs|>ε},

be the piece-wise constant process associated with those jumps of X with sizes
larger than ε. Then, X̃ε is a compound Poisson process independent of X − X̃ε.

1.2. The Statistical Problems and Methodology

We are interested in estimating the Lévy density s on a window of estimation
D := [a, b] ⊂ R\{0}, based on discrete observations of the process on a finite
interval [0, T ]. We remark that the domain D is “separated” from the origin; that is
to say, the estimation window D lies outside of a neighborhood of the origin. If the
whole path of the process were available (and hence, the jumps of the process would
be available), the problem would be identical to the estimation of the intensity of
a non-homogeneous Poisson process on a fixed time interval, say [0, 1], based on T
independent copies of the process. However, under discrete-sampling, the times and
sizes of jumps are latent (unobservable) variables, whose statistical properties can
be assessed when the frequency of observations increase to infinity at a certain speed
relative to the time horizon. Hence, we will aim at determining the performance of
our estimation method as both frequency and time horizon increase.

We adopt the so-called method of sieves originally proposed by [18] and im-
plemented by Birgé, Massart, and others (see e.g. [3] & [5]) in several classical
nonparametric problems such as density estimation and regression. This approach
consists of the following general steps. First, choose a family of finite-dimensional
linear models of functions, called sieves, with good approximation properties. Com-
mon sieves are splines, trigonometric polynomials, or wavelets. Second, specify a
distance between functions relative to which the best approximation to s, in a given
linear model, is going to be defined and characterized. Finally, devise an estimator,
called the projection estimator, for the best approximation of s in the given linear
model. It is important to point out that in principle there is no guarantee that the
projection estimator will be nonnegative. In practice, one barely faces this prob-
lem when working with a large sample size, which is exactly the situation when
nonparametric methods are recommended.

A linear model has the generic form

(1.4) S := {β1ϕ1 + · · ·+ βdϕd : β1, . . . , βd ∈ R},

where ϕ1, . . . , ϕd are given functions, typically taken to be orthonormal with respect
to the inner product 〈p, q〉 :=

∫
D
p(x)q(x)dx. In the sequel, ‖ · ‖ stands for the

associated norm 〈·, ·〉1/2 on L2(D, dx). Relative to the distance induced by ‖ · ‖, the
element of S closest to s, i.e. the orthogonal projection of s on S, is

(1.5) s⊥(x) :=
d∑

j=1

ν(ϕj)ϕj(x),
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where ν(ϕj) := 〈ϕj , s〉 =
∫
ϕj(x)s(x)dx. Then, the method of sieves boils down

to estimate the orthogonal projection (1.5) on an “adequate” sieve S. The core
problem in this paper is to determine what a good sieve is. A very large linear
model S will allow to attain a close approximation to s, but will entail necessarily
a high estimation variance as the result of the large number of coefficients βi to be
estimated. Therefore, an essential task, called model selection, consists of selecting
a linear model S accomplishing a good tradeoff between the error of approximation
(or mis-specification error) and the standard error of the estimation. Concretely,
one wishes to minimize the risk of the estimator ŝ, which in turn can be decomposed
into two antagonist terms as follows:

(1.6) E ‖s− ŝ‖2 = ‖s− s⊥‖2 + E ‖s⊥ − ŝ‖2.
The first term, called the bias term, accounts for the error of the approximation,
while the second, called the variance term, accounts for the standard error of the
estimation.

1.3. An Overview of the Estimators and the Results

We assume that the Lévy process {Xt}t≥0 is being sampled over a time horizon
[0, T ] at discrete times 0 < tn1 < · · · < tnn = T . In the sequel, tn0 := 0, πn := {tnk}nk=0,
and π̄n := maxk{tnk−tnk−1}, the so-called mesh of the partition. We shall sometimes
drop the superscript n in πn and tni . The following statistics are the main building
blocks of our estimators:

(1.7) β̂π
n

(ϕ) :=
1
tn

n∑

k=1

ϕ
(
Xtn

k
−Xtn

k−1

)
.

In the case of a quadratic function ϕ(x) = x2,
∑n
k=1 ϕ

(
Xtn

k
−Xtn

k−1

)
is called the

realized quadratic variation (or variance) of the process. Thus, the statistics (1.7)
can be interpreted as the average realized ϕ−variation of the process per unit time
based on the observations Xtn1

, . . . , Xtnn
.

To explain the motivation behind the estimator in (1.7), let us assume for now
that sampling observations are equally-spaced in time so that ∆n := tni −tni−1 = T/n
for all i, and hence,

E {β̂πn(ϕ)} =
1

∆n
Eϕ (X∆n

) ,

Var
{
β̂π

n

(ϕ)
}

=
1
T

(
1

∆n
Eϕ2 (X∆n)

)
− 1
n

(
1

∆n
Eϕ (X∆n)

)2

.

In view of (1.3), it is now evident that

(1.8) lim
n→∞

E {β̂πn(ϕ)} =
∫
ϕ(x)s(x)dx, and lim

T→∞
sup
n

Var
(
β̂π

n

(ϕ)
)

= 0,

if ϕ is ν-continuous, bounded, and vanishing in a neighborhood of the origin. In
statistical terms, (1.8) means that the statistic β̂π

n

(ϕ) is an asymptotically unbi-
ased estimator of

∫
ϕ(x)s(x)dx with associated risk vanishing uniformly when time

horizon T increases. The previous argument leads us to propose

(1.9) ŝπ
n

(x) :=
d∑

j=1

β̂π
n

(ϕj)ϕj(x),
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as a natural estimator for the orthogonal projection s⊥ defined in (1.5). In view of
(1.8), ŝπ

n

is a “consistent” estimator for s⊥, in the integrated mean-square sense, as
both the time horizon T = tnn and the sampling frequency n/tnn go to∞. The general
sampling case will be considered in Section 2 as well as other statistical properties.
It is worth pointing out that ŝπ

n

is independent of the specific orthonormal basis of
S as it can be proved that ŝπ

n

is the unique solution of the minimization problem

min
f∈S

γπ
D

(f),

where γπ
n

D
: L2 (D, dx)→ R is given by

(1.10) γπ
n

D
(f) ≡ − 2

tnn

n∑

k=1

f(Xtn
k
−Xtn

k−1
) +

∫
f2(x)dx.

In the literature of model selection (see e.g. [4] and [25]), γπ
n

D is called the contrast
function.

Finding the best sieve S to estimate s, even if we stick with using the class of
projection estimators in (1.9), is impossible because s is unknown. However, it is
possible to select a reasonably good model under certain qualitative assumptions
on the parameter s, typically expressed by requiring s to be a member of a certain
class Θ of smooth functions. Concretely, suppose we are interested in selecting a
good model out of a family of linear models {Sm}m∈M (here, M is a suitable set
of labels). Let m∗ := m∗(π) be the optimal minimax element of {ŝm}m∈M on Θ,
defined as

m∗ := arginfm∈M{sup
s∈Θ

E ‖s− ŝm‖2}.

By requiring certain conditions on Θ and by choosing a suitable family of sieves
{Sm}m∈M, we can ensure that

(1.11) E ‖s− ŝm∗(π)‖2 → 0

as the mesh of the partition π = {tk}k≥1 vanishes and the time horizon T := tn goes
to infinity. Our goal will be to select a linear model m̂(π) ∈M so that the projection
estimator on this model, ŝm̂(π), “attains” the minimax rate of convergence in (1.11),
in the sense that

(1.12) lim sup
E ‖s− ŝm̂(π)‖2
E ‖s− ŝm∗(π)‖2

<∞,

where the limit is taken as π̄ → 0 and T → ∞. In order to be able to determine
in a “simple” way the rate of convergence of ŝm̂(π), we shall control the sampling
frequency, measured by π̄, in function of the time horizon T . In the case of a finite-
jump activity process with a jump intensity of λ jumps per unit time, we can expect
that it suffices to sample at a faster rate than 1/T (that is, π̄ T → 0). It is intuitive
that in general the sampling frequency will depends on how close the window of
estimation D is to the origin (see Section 3.4). The limit result (1.12) and the rate
of convergence of projection estimators for a certain class of smooth Lévy densities
are addressed in Section 3.

In this paper, we will show that the rate of convergence that can be attained
using projection estimation on sieves is actually the best possible among all feasible
estimators, given the information available on s (namely, that s belongs to a certain
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class Θ of smooth functions), and even if the estimators were based on continuous-
time sampling of the process. Concretely, define ŝ∗

T
be the minimax estimator,

ŝ∗
T

:= arg inf
ŝ

sup
s∈Θ

E ‖s− ŝ‖2 <∞,

where the infimum is over all the estimators ŝ of s based on {X(t)}0≤t≤T . Then,
by sampling at a high enough frequency (relative to T ), we can accomplish that

lim sup
T→∞

E ‖s− ŝm̂‖2
E ‖s− ŝ∗

T
‖2 <∞.

The rate of convergence of the minimax estimator will be provided in Section 4.
Let us finish by pointing out that the model selection problem was already ana-

lyzed in Figueroa-López & Houdré (2006) using the statistics

(1.13) β̂c(ϕ) :=
1
tn

∑

t≤tn
ϕ (∆Xt) ,

which intrinsically required continuous-time sampling of the process to determine
the jumps ∆Xt. In the cited paper, the statistics (1.7) were proposed as good proxies
of (1.13). Indeed, convergence in distribution is not hard to check, but moreover,
recently [20] prove that (1.7) converges in probability to (1.13) when n → ∞ (for
fixed T ). To the best of our knowledge, an analysis of the model selection problem
for Lévy densities, under discrete sampling schemes, has not been considered before
the present work.

1.4. Outline

The paper is structured as follows. In Section 2, we introduce the estimators pro-
posed in this paper and study some basic statistical properties. In particular,
we prove a CLT for the estimator β̂π(ϕ) of (1.7) centered at the inner product
β(ϕ) =

∫
ϕ(x)s(x)dx. In Section 3, we describe how to control the risk of the pro-

jection estimators by imposing three conditions. First, the time horizon T should be
large enough (compared to the complexity of the sieves). Second, the time span be-
tween consecutive observations should be small enough compared to the time hori-
zon. Finally, the sieves should have good approximating properties in general classes
of smooth functions. We show that by ensuring the three previous conditions and by
suitably choosing the dimension of the sieve (in terms of the presumed smoothness
of the function s), the rate of convergence of the risk is of order O(T−2α/(2α+1)) as
T →∞ provided that the parameter s has “degree of smoothness” α.

In Section 4, the minimax risk of estimation, defined by

inf
ŝ
T

sup
s∈Θ

E s‖s− ŝT ‖2,

is studied. Here, the infimum is over all estimators ŝ
T

which can be computed from
the whole sample paths of X on the interval [0, T ] and the supremum is over all Lévy
densities in a class Θ of functions that are smooth in D = [a, b]. We found that the
minimax risk converges at an order of O(T−2α/(2α+1)), where α is a parameter that
measures the smoothness of the functions on Θ. For instance, if s has d continuous
derivatives in D, then α ≥ d. The rate of convergence of the estimation is faster
when α increases. Sections 3 and 4 justify the claim of the abstract: “...we show that
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it is feasible to choose the dimension of the sieve so that the rate of convergence
of the risk of estimation off the origin is the best possible from a minimax point
of view, and even if the estimation were based on the whole sample path of the
process”.

In Section 5, we propose a data-driven selection method for the sieve. Instead
of deciding the dimension of the sieve from a presumed degree of smoothness of s
(as it was suggested in Section 3), we propose to choose the sieve that minimizes
an unbiased estimator of the risk of the projection estimator corresponding to that
sieve. Since the proposed estimator of the risk will require the knowledge of all
jumps of X up to time T , we replace it by a natural discrete-based proxy, where
the jumps ∆Xt are replaced by the increments Xtk−Xtk−1 . Section 6 illustrates the
statistical methods using simulation experiments in the case of a variance gamma
Lévy model. We finish with an Appendix where some technical proofs are given.

2. The Estimators and Central Limit Theorems

In this section, our goal is to survey some statistical properties of the estimators
(1.7) and (1.9). We already mentioned a few of these in the case of regular sampling1

and of bounded ν−continuous test functions ϕ vanishing in a neighborhood of the
origin. In the framework of this paper, this kind of test functions indeed suffices
to recover and estimate the Lévy density off the origin. Our first result is a simple
application of the Central Limit Theorem (CLT) for independent random variables
(cf. [20] [Theorem 3.2] for the case of regular sampling). In the following results, Z
stands for a standard Normal random variable.

Proposition 2.1. Let ϕ be ν-continuous, bounded, and such that ϕ(x) = o(|x|), as
x→ 0. Then,

(2.1)
√
tn

(
β̂π(ϕ)− E β̂π(ϕ)

)
D−→ ν(ϕ2)

1
2 Z,

as tn →∞ and π̄ → 0.

Proof. Let Γt(ϕ) := Eϕ2(Xt)− {Eϕ(Xt)}2 and ∆k := tk − tk−1. We can write

√
tn

(
β̂π(ϕ)− E β̂π(ϕ)

)
=

n∑

k=1

ξπk ,

where ξπk = 1√
tn

{
ϕ
(
Xtk −Xtk−1

)
− Eϕ

(
Xtk−tk−1

)}
. Under the assumption of

this Proposition, it turns out that limt→0
1
tΓt(ϕ) = ν(ϕ2) (see Lemma 5.5 in Jacod

(2007)), and thus,

σ̄2
n,π := Var

n∑

k=1

ξπk =
1
tn

n∑

k=1

Γ∆k
(ϕ) −→ ν(ϕ2),

as the mesh π̄ := maxk{tk − tk−1} → 0. Due to the boundedness of ϕ, we have
that, for π̄ small enough,

|ξπk |
σ̄n,π

≤ C 1√
tn
→ 0,

as tn → ∞. Then, (2.1) follows from the Central Limit Theorem for independent
random variables (see e.g. the Corollary following Theorem 7.1.2 in [10]).

1Sampling equally spaced in time.
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In order to provide an explicit centering in (2.1), we need to estimate the rate
of convergence of the bias E β̂π(ϕ)− ν(ϕ). Since

E β̂π(ϕ)− ν(ϕ) =
1
tn

n∑

k=1

∆k

{
1

∆k
Eϕ(X∆k

)− ν(ϕ)
}
,

the problem is equivalent to analyzing the rate of convergence in (1.3). To achieve
this goal, we need to impose some regularity on either the Lévy process or the
moment functions ϕ. Following the second approach, [15] shed light on this problem
for functions ϕ ∈ C2

b (R); namely, twice-continuously differentiable functions ϕ such
that lim sup|x|→∞ |ϕ(i)(x)| < ∞, for i = 0, 1, 2. Below, ∗ denotes the convolution
operator ν1 ∗ ν2(ϕ) :=

∫∫
ϕ(x1 + x2)ν(dx1)ν(dx2), and L denotes the infinitesimal

generator of the process X (see e.g. Sato (1999)), which is known to be given by

(2.2) (Lϕ)(x) :=
σ2

2
ϕ′′(x)+bϕ′(x)+

∫ (
ϕ(y + x)− ϕ(x)− yϕ′(x)1{|y|≤1}

)
ν(dy);

see Theorem 31.5 in [29] and also in Proposition 2.3 in [15]. The following result
can be found in [15] (see Proposition 3.1), where a proof is provided for a certain
class of unbounded functions ϕ:

Lemma 2.2. If ϕ ∈ C2
b (R) vanishes in a neighborhood of the origin, then

(2.3) lim
t→0

1
t

{
1
t

Eϕ(Xt)− ν(ϕ)
}

= νε(Lϕ)− 1
2
νε ∗ νε(ϕ),

where νε(dx) := 1{|x|>ε}ν(dx).

The following is an easy consequence of the previous two results.

Theorem 2.3. Under the assumptions of Lemma 2.2,

(2.4)
√
tn

(
β̂π(ϕ)− ν(ϕ)

)
D−→ ν(ϕ2)

1
2 Z

as tn →∞ and π̄ → 0 so that π̄
√
tn → 0.

Proof. It suffices to prove that

Dn :=
√
tn

(
E β̂π(ϕ)−

∫
ϕ(x)ν(dx)

)
−→ 0.

Writing ∆k = tk−tk−1 and using (2.3), for π̄ = maxk ∆k small enough, there exists
a constant C such that

|Dn| ≤
1√
tn

n∑

k=1

∆k

∣∣∣∣
1

∆k
Eϕ(X∆k

)− ν(ϕ)
∣∣∣∣ ≤ C

1√
tn

n∑

k=1

∆2
k ≤ Cπ̄

√
tn → 0,

by assumption.

Remark 2.4. As a direct consequence, it follows that β̂π(ϕ) is a consistent esti-
mator for ν(ϕ) as tn → ∞ and π̄ → 0 so that π̄

√
tn → 0. As a matter of fact, it

suffices that tn →∞ and π̄ → 0, provided that e.g. f is ν-continuous, bounded, and
f(x) = o(|x|2), as x → 0. A proof of this statement is outlined in [32] for regular
sampling observations, while the general case is considered in [14].
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In view of the linearity of β̂π(·) and ν(·), we conclude that

Corollary 2.5. Let Ξ be the class of functions ϕ ∈ C2
0 (R) that vanish in a

neighborhood of the origin. Suppose that the linear model S in (1.4) is such that
{ϕj}dj=1 ⊆ Ξ. Then, the projection estimator ŝπ(x) in (1.9) satisfies the limiting
relation

(2.5)
√
tn
(
ŝπ(x)− s⊥(x)

) D−→ V 1/2(x)Z

as tn → ∞ and π̄ → 0 so that π̄
√
tn → 0, where V (x) :=

∫
f2(y)ν(dy) with

f(y) :=
∑d
j=1 ϕj(x)ϕj(y).

Remark 2.6. Notice that we have the following bound for the variance

V (x) ≤ ‖s‖∞,D
d∑

j=1

ϕ2
j (x),

where ‖s‖∞,D := sup
y∈D

s(y).

We can relax the regularity conditions on the moment functions ϕ by using a
simple integration by parts formula (see Remark 3.3 below). A different approach
could be to impose additional regularity conditions on the Lévy process itself. In
this direction, [28] studies series expansions for the transition density pt(x) of Xt

as powers of t. For instance, one of their results states that if pt is monotonically
decreasing for x > b and x < −c, for some b, c > 0, then for any η > 0, there exists
ε′ > 0 and t0 > 0, such that

(2.6)
1
t
pt(x) = e

−
∫
{|y|>ε}

s(y)dy
s(x) +Oε,η(t),

for |x| > η. Such a result will allow us to estimate the rate of convergence in (1.3)
if ϕ vanishes around the origin, since

1
∆

Eϕ(X∆)− ν(ϕ) =
∫
ϕ(x)

{
1
∆
p∆(x)− s(x)

}
dx.

However, we should warn that the derivation of (2.6) in [28] is not completely
formal2, and hence, we avoid to use such an approach in the sequel. See [17] for
more insight on the small-time polynomial expansions of the transition distributions
of the Lévy process.

3. The Model Selection Problem

In this part we describe how to control the risk (1.6) of the projection estimators
by imposing two conditions. First, the time horizon T should be large enough
(compared to the complexity of the sieves), while the sampling frequency is kept
small compared to the time horizon. These conditions will ensure that the variance
term of (1.6) is of order O(T−1). Second, the sieves should have good approximating
properties in general classes of smooth functions so that when the Lévy density is

2 The main problem arises from the application of Lemma 1 in [28]. The value of t0 actually
depends on δ. Later on in their proof, δ is taken arbitrarily small, which is likely to result in t0 → 0
(unless otherwise proved).
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presumed to have “degree of smoothness α”, the bias term of (1.6) is of order
O(m−α), where m is the dimension of the sieve (see Section 3.2 for the details). We
prove that under the above conditions, we can tune up the dimension of the sieve
to the presumed smoothness of s so that the rate of convergence of the risk is of
order O(T−2α/(2α+1)).

3.1. Analysis of the Variance Term

Consider the setting and notation of the introduction. For simplicity, we focus on
estimation windows D in the positive reals (that is, D := [a, b], for some 0 < a <
b ≤ ∞). By making the sampling frequency per unit time high enough relative to
the sampling horizon T , we can estimate the rate at which the variance term of
the risk (1.6) decreases in the time horizon T . In the subsequent sections, we will
see that this estimate actually leads to a rate of convergence for the risk which is
optimal, even if our estimation were based on the whole sample path {Xt}t≤T . We
shall need the following technical lemma, which we prove in the appendix for the
sake of completeness.

Lemma 3.1. For any T > 0, there exist δT > 0 and k > 0 (independent of T )
such that

sup
y∈D

∣∣∣∣
1
∆

P [X∆ ≥ y]− ν([y,∞))
∣∣∣∣ < k

1
T

for all ∆ < δ
T

.

The mesh size δT will play a very important role below as the asymptotic results
in the sequel will hold true as far as the sampling frequency, measured by π̄ :=
max {tk−tk−1}, is such that π̄ < δT . Thus, from a practical point of view, estimating
δT is crucial. We will discuss this point in more detail in the Section 3.4.

The following easy estimate will be useful in the sequel.

Lemma 3.2. Suppose that ϕ has support [c, d] ⊂ R+\{0}, where ϕ is continuous
with continuous derivative. Then,

∣∣∣∣
Eϕ (X∆)

∆
− ν(ϕ)

∣∣∣∣ ≤
(
|ϕ(c)|+

∫ d

c

|ϕ′(u)| du
)
M∆([c, d]),

where M∆([c, d]) := supy∈[c,d]

∣∣ 1
∆ P [X∆ ≥ y]− ν([y,∞))

∣∣.
Proof. The result follows from the following identities

Eϕ(X∆) = ϕ(c) P [X∆ ≥ c] +
∫ ∞

c

ϕ′(u) P [X∆ ≥ u] du,
∫
ϕ(x)ν(dx) = ϕ(c)ν ([c,∞)) +

∫ ∞

c

ϕ′(u)ν ([u,∞)) du.

These are standard consequences of Fubini’s Theorem.

Remark 3.3. We can apply the previous two lemmas to obtain CLTs for β̂π and ŝπ.
Indeed, if ϕ is as in Lemma 3.2 and, for each T , the partition π

T
has mesh smaller

than δ
T

, the critical value in Lemma 3.1, then (2.3) holds true. The projection
estimator ŝπ will satisfy (2.5) provided that the basis functions ϕ are as in Lemma
3.2.
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We are now ready to estimate the variance term. We shall impose conditions on
the approximating linear models so that the estimates of the above Lemmas are
applicable.

Standing assumption 1. The linear model S of (1.4) is generated by an orthonor-
mal basis G := {ϕj}dj=1 such that each ϕj is bounded with continuous derivative on
the interior of its support, which is assumed to be of the form [xj−1, xj ] ⊂ D.

In the sequel, we will need the following notation:

D1(S) := inf
G

max
{
‖ϕ‖2∞ : ϕ ∈ G

}
,(3.1)

D2(S) := inf
G

max
{
‖ϕ′‖21 : ϕ ∈ G

}
,(3.2)

where the infimums are over all orthonormal bases G of S.

Proposition 3.4. There exists a constant K > 0 such that

(3.3) E ‖s⊥ − ŝπ‖2 ≤ K dim(S)
T

,

for any linear model S satisfying the Standing Assumption 1, and for any partition
π : 0 = t0 < · · · < tn = T such that T > max{D1(S), D2(S)} and π̄ < δT , where
δ
T

is the “critical” mesh size introduced in Lemma 3.1.

Proof. Fix an orthonormal basis G := {ϕj}dj=1 of S. Let Dt(ϕ) := 1
t Eϕ(Xt)−ν(ϕ).

For any ϕj ∈ G, we have

E
{
β̂π(ϕj)− ν(ϕj)

}2

≤ 1
tn

∫
ϕ2
j (x)ν(dx)+

+
1
t2n

n∑

k=1

∣∣D∆k
(ϕ2
j )
∣∣∆k +

{
1
tn

n∑

k=1

|D∆k
(ϕj)|∆k

}2

,

where ∆k := tk − tk−1. Then, from the previous two lemmas, when π̄ < δT ,

E
{
β̂π(ϕj)− ν(ϕj)

}2

≤ 1
T

∫
ϕ2
j (x)ν(dx)

+
k

T 2

(
|ϕ2
j (xj−1)|+

∫ xj

xj−1

∣∣2ϕj(u)ϕ′j(u)
∣∣ du

)

+
k2

T 2

(
|ϕj(xj−1)|+

∫ xj

xj−1

∣∣ϕ′j(u)
∣∣ du

)2

,

which can be simplified further as follows

E
{
β̂π(ϕj)− ν(ϕj)

}2

≤ 1
T

∫
ϕ2
j (x)ν(dx) +

2k2

T 2

(
‖ϕj‖∞ + ‖ϕ′j‖1

)2

≤ ‖s · χD‖∞
T

+ 8k2
maxj′ ‖ϕj′‖2∞ + ‖ϕ′j′‖21

T 2
.

Then,

E ‖s⊥ − ŝπ‖2 ≤ dim(S)
T

{
‖s · χ

D
‖∞ + 8k2

maxj′ ‖ϕj′‖2∞ + ‖ϕ′j′‖21
T

}
.

Now, it is evident that (3.3) holds whenever T > max{D1(S), D2(S)}.
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3.2. The Approximation Error for Besov Type Smooth Functions

As it is customary, the bias term in (1.6) will be estimated by imposing certain
degree of smoothness on the function s. Concretely, the restriction of the Lévy
density s to D := [a, b] is assumed to belong to the Besov space Bα∞ (Lp([a, b]))
for some p ∈ [2,∞] and α > 0 (see for instance [12] and references therein for
background on these spaces). The space Bα∞ (Lp([a, b])) consists of those functions
f belonging to Lp([a, b]) if 0 < p < ∞ (or being uniformly continuous if p = ∞)
such that

|f |Bα∞(Lp) ≡ sup
δ>0

1
δα

sup
0<h≤δ

‖∆r
h(f, ·)‖p <∞,

with r := [α] + 1. Here, ∆h(f, x) ≡ f(x + h) − f(x) and ∆r
h(f, x) is the rth-order

difference of f defined recursively by

∆r
h(f, x) ≡ ∆h(∆r−1

h (f, ·), x),

for x′s such that x+ rh ∈ D and r ∈ N.
The Besov class is closely related to the so-called class of Lipschitz functions.

For constants k ∈ N and β ∈ (0, 1], f is said to belong to Lip(k + β, Lp([a, b])) if
f, . . . , f (k−1) are absolutely continuous (on [a, b]) and f (k) belongs to Lp((a, b)) and
satisfies

(3.4) sup
h>0

1
hβ
‖∆h(f (k), ·)‖p <∞.

It is known that if β < 1 and 1 ≤ p ≤ ∞, then f ∈ Lip(k + β, Lp([a, b])) if and
only if f is a.e. equal to a function in Bα∞ (Lp([a, b])) with α := k + β. In general,
Lip(k + β, Lp([a, b])) ⊂ Bk+β

∞ (Lp([a, b])), for any 0 < p ≤ ∞ (see e.g. [12]). Notice
that when p =∞, the condition (3.4) takes the form:

(3.5) |f (k)(x)− f (k)(y)| ≤ L|x− y|β ,

for all x, y ∈ (a, b) and some L <∞.
An important reason for working with the Besov-type smooth functions is the

availability of estimates of the approximation error by splines, trigonometric polyno-
mials, and wavelets (see [12] and [3] for more details). For instance, if Sk,m denotes
the space of piecewise polynomials of degree at most k, based on a regular partition
of [a, b] with m classes, and s ∈ Bα∞ (Lp([a, b])) with α < k + 1, then there exists a
constant c[α] <∞ such that

(3.6) inf
f∈Sk,m

‖s− f‖p ≤ c[α]|s|Bα∞(Lp)(b− a)αm−α.

Thus, when p ≥ 2, the orthogonal projection of s on Sk,m, denoted by s⊥m, is such
that

(3.7) ‖s− s⊥m‖ ≤ c[α](b− a)
1
2− 1

p+α|s|Bα∞(Lp)m
−α.

Notice that the elements of Sk,m are not necessarily smooth (not even continuous)
and hence, they are not “splines” in the standard sense of the literature, where a
spline is understood as a smooth piece-wise polynomial. The upper bound (3.6)
is actually true if we restrict to certain splines of Sk,m (say B-splines) (see (10.1)
in Chapter 2 of [12]). For the sake of completeness let us describe in detail the
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space Sk,m as well as give estimates for the constants (3.1-3.2). Let Qj be the
Legendre polynomials of order j on L2([−1, 1], dx). The space Sk,m is generated by
the orthonormal functions

ϕ̂i,j(x) :=

√
2j + 1

xi − xi−1
Qj

(
2x− (xi + xi−1)

xi − xi−1

)
1(xi−1,xi)(x),

for i = 1, . . . ,m and j = 0, . . . , k, and where a = x0 < · · · < xm = b are equally-
spaced points. It is well-known that |Qj(x)| ≤ 1 and |Q′j(x)| ≤ Q′j(1) = j(j+1)

2 .
Then, fixing ∆x := xi − xi−1 = b−a

m , we have that

ϕ̂′i,j(x) = 2
√

2j + 1 ∆−3/2
x Q′j

(
2x− (xi + xi−1)

xi − xi−1

)
1(xi−1,xi)(x),

‖ϕ̂′i,j‖1 ≤ 2
√

2j + 1∆−3/2
x

∫ xi

xi−1

sup
u
|Q′j(u)|dx ≤

√
2j + 1∆−1/2

x (j)(j + 1).

It is now clear that

D2(Sk,m) ≤ max
i,j

{
‖ϕ′i,j‖21

}
≤ (k + 1)2k2(2k + 1)

b− a m.

In a similar manner one can check that

D1(Sk,m) ≤ (k + 1)2(2k + 1)
b− a m.

3.3. Rate of Convergence for Smooth Functions Via Splines

As a consequence of the variance and bias term estimates given in the previous two
parts, we now estimate the rate of convergence on D of the projection estimators
(1.9), on the regular piece-wise polynomials {Sk,m}m≥1, assuming that the Lévy
density s is in the Besov class Bα∞ (Lp([a, b])) with p ≥ 2 and α < k + 1. It turns
out that under the stated conditions, projection estimators converge at a rate at
least as good as T−2α/(2α+1). The following result is valid provided that, for each
time horizon T , the mesh of the sampling times π

T
is smaller than the critical mesh

δ
T

introduced in Lemma 3.1. In Section 4, we will see that this rate is actually the
best possible even under continuous sampling.

Proposition 3.5. Let m̂
T

:=
[
T 1/(2α+1)

]
and let Θ(R,L) be the class of Lévy

densities s such that ‖s ·χ
D
‖∞ < R, and such that the restriction of s to D := [a, b]

is a member of Bα∞ (Lp([a, b])) with |s|Bα∞(Lp) < L and p ≥ 2. Then,

(3.8) lim sup
T→∞

T 2α/(2α+1) sup
s∈Θ(R,L)

E
[
‖s− ŝ

T
‖2
]
<∞,

where for each T , the estimator ŝ
T

is given by (1.7) and (1.9) with S = Sk,m̂
T

,
k > α− 1, and a mesh π̄

T
smaller than δ

T
.

Proof. From the two previous parts, there exists a constant K (depending on
k, a, b, α,R, p, L) such that

‖s− s⊥m‖ ≤ Km−α and E ‖s⊥ − ŝπm‖2 ≤ K
m

T
,
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for m ∈M
T

:= {m′ : T > Km′} and π̄ < δT . Then for a constant M and for large
enough T ,

sup
s∈Θ(R,L)

E
[
‖s− ŝ

T
‖2
]
≤M

{[
T 1/(2α+1)

]−2α

+
[
T 1/(2α+1)

]
T−1

}
.

The limit (3.8) is now clear.

Example 3.6. If s has continuous bounded derivative on D := [a, b] ⊂ R\{0}
(hence, s ∈ Bα∞ (L∞([a, b])), for any α < 1), then one can construct regular his-
togram estimators converging to s on D at a rate faster than T−1/2 if one selects
the number of classes approximately equal to T 1/2 and the mesh of the partition π
smaller than δT .

3.4. About the Critical Mesh

The critical mesh, introduced in Lemma 3.1, gives a bound on the mesh of the sam-
pling frequency needed to estimate in a simple way the rate of convergence of the
variance term (see Proposition 3.4). Of course, any hope for a feasible implementa-
tion of this estimation scheme will require an explicit estimate of this critical mesh.
In the compound Poisson case (when ν(R\{0}) <∞), it turns out that δ

T
= o

(
1
T

)

suffices. In the general case, we have the following result, which tell us, in partic-
ular, that the sampling frequency needs to be higher when one wishes to estimate
the Lévy density closer to the origin.

Proposition 3.7. Let ρ > 0 such that aρ > 1. Then, there exists T0(ρ) > 0 and
k > 0 such that

sup
y∈D

∣∣∣∣
1
∆

P [X∆ ≥ y]− ν([y,∞))
∣∣∣∣ < k

1
T

for all T > T0 and ∆ < T−
1
ρT .

Proof. As in the proof of Lemma 3.1, we can obtain

sup
y∈D

∣∣∣∣
1
t

P [Xt ≥ y]− ν([y,∞))
∣∣∣∣ ≤

1
t

P [Xε
t ≥ a] + 2c

1
T

+ ν([a,∞)) P [|Xε
t | ≥ η]

+ λε P [|Xε
t | ≥ η] + ν([a,∞))λεt+ λ2

εt,

valid for T > 1/a, η = 1
T , and 0 < ε < a − η (here c := supa−η≤x≤b+η s(x)). Fix

ε > 0 sufficiently small so that ρ < 1
ε . Let us recall that there exists y0 := y0(ρ)

such that

P [|Xε
t | ≥ y] ≤ exp{ρy0 log y0} exp {ρy − ρy log y} tyρ

for all t < y
y0(ρ) (see e.g. [28]). In particular, when y = η = 1

T and t < T−
1
ρT , for T

sufficiently large that T−
1
ρT+1 < 1

y0(ρ) ,

P [|Xε
t | ≥ η] ≤ kT−1.

Similarly, when y = a and t < T−
1
ρT ,

1
t

P [Xε
t ≥ a] ≤ ktaρ−1 < kT−

1
ρT (aρ−1) < kT−1,

if T > ρ
aρ−1 . This proves the result since ε is fixed.
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Remark 3.8. The estimate of the critical mesh given in Proposition 3.7 can be
improved substantially. Indeed, in a forthcoming paper, we will show that it suffices
that ∆ = o(T−1).

4. Minimax Risk of Estimation for Smooth Lévy Densities

In this section, we show that the rate of convergence O(T−2α/(2α+1)) attained by
projection estimators is the best possible, in the sense that there is no estimator
ŝ∗
T

that can converge to s faster than T−2α/(2α+1), for any s ∈ Θ, even assum-
ing continuous-time sampling. In order to prove this, we will assess the long-run
behavior of the minimax risk on Θ, roughly defined as

inf
ŝ

sup
s∈Θ

E s [d (s, ŝ)] ,

where the infimum is taken over all possible estimators ŝ, and d(s, ŝ) measures the
distance between ŝ and s.

Traditionally, the performance of nonparametric estimators is gauged by compar-
ing the rate of convergence of the estimator in question to the rate of convergence
of the minimax risk when the available data increases. The rates of convergence
of minimax risks are available in most of the traditional nonparametric problems.
For instance, Ibragimov and Has’minskii [19] and Barron et. al. [2] provided this
kind of asymptotics for the problem of density estimation based on i.i.d. random
variables, while Kutoyants [22] and Reynaud-Bouret [25] considered the problem
of intensity estimation of a finite Poisson point processes. This last set-up is rel-
evant for our problem since the jumps of a Lévy process can be associated with
a (possibly infinite) Poisson point process on R+ × R\{0} (see e.g. Theorem 19.2
in [29]). Using this connection, we adapt below a result from [22] to obtain the
long-run asymptotics of the minimax risk of estimation of the Lévy density off the
origin. The idea of the proof, due to Ibragimov and Has’minskii [19], is based on
the statistical toolbox for distributions satisfying the Local Asymptotic Normality
(LAN) property (see Chapters II and Section IV.5 of [19]).

Let us introduce some notation. Here, ` : R → R stands for a loss function
satisfying the following:

(i) `(·) is nonnegative, `(0) = 0 but not identically 0, and ` continuous at 0;
(ii) ` is symmetric: `(u) = `(−u) for all u;
(iii) {u : `(u) < c} is a convex set for any c > 0, ;
(iv) `(u) exp{ε|u|2} → 0 as |u| → ∞ for any ε > 0.

We consider Lévy densities s : R\{0} → R+ that are k times differentiable on an
interval [a, b] ⊂ R\{0} and satisfy (3.5) for all x, y ∈ [a, b]. For given k ∈ N and
β ∈ (0, 1], we denote such a class of functions by Θk+β (L; [a, b]). The proof of the
result below is presented in the Appendix 6.3.

Theorem 4.1. If x0 is an interior point of the interval [a, b], then

(4.1) lim inf
T→∞

{
inf
ŝ
T

sup
s∈Θ

E s

[
`
(
Tα/(2α+1) (ŝ

T
(x0)− s(x0))

)]}
> 0,

where α := k + β, Θ := Θα (L; [a, b]) and the infimum is over all the estimators ŝ
T

of s based on {X(t)}0≤t≤T .
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The previous result can be strengthen to be uniform in x0 ∈ (a, b) and as a
consequence, the long-run behavior of the minimax risk under the integrated mean-
square distance can be assessed. The proof of the next result is given in Appendix
6.3.

Corollary 4.2. Under the notation and conditions of Theorem 4.1, the following
two limits hold:

lim inf
T→∞

{
inf
ŝ
T

inf
x∈(a,b)

sup
s∈Θ

E s

[
`
(
Tα/(2α+1) (ŝ

T
(x)− s(x))

)]}
> 0,(4.2)

lim inf
T→∞

T 2α/(2α+1)

{
inf
ŝ
T

sup
s∈Θ

E s

[∫ b

a

(ŝ
T

(x)− s(x))2
dx

]}
> 0.(4.3)

Remark 4.3. The previous result is also valid for classes slightly smaller than
Θα (L; [a, b]) such as

Θ = Θα(L; [a, b]) ∩ {s : ‖s‖L∞([a,b]) < R},

which is closely related to the Besov class Θ(R,L) of (3.8). Indeed, Θα(L; [a, b]) is
contained in Bα∞ (L∞([a, b])) (see Section 2.9 of [12]), and thus,

(4.4) lim inf
T→∞

T 2α/(2α+1)

{
inf
ŝ
T

sup
s∈Θ(R,L)

E s

[∫ b

a

(ŝ
T

(x)− s(x))2
dx

]}
> 0.

We conclude that there is no reasonable estimator ŝ
T

of s capable of outperforming
the rate T−2α/(2α+1) uniformly on Θ: there is always an s ∈ Θ for which

T 2α/(2α+1) E s

[
‖ŝ

T
− s‖2

]
> B,

for some B > 0 and for large enough T . Therefore, the estimator described in Propo-
sition 3.5 achieves the optimum rate of convergence on Θ(R,L) from a minimax
point of view.

5. A Data-Driven Selection Method and Adaptability

The model selection criterion described in Section 3.3, where one tunes up the num-
ber of classes m to the “smoothness” of s, has the obvious drawback of requiring
(or at least presuming) the smoothness parameter α. In the literature of nonpara-
metric statistics, one wishes to devise data-driven selection methods that can adapt
to arbitrary degree of smoothness (see e.g. Birgé and Massart [5] for an extensive
exposition of the topic).

A typical approach for adaptive model selection schemes consists of minimizing
an unbiased estimator of the risk of estimation. This approach was developed in
[13] in the context of Lévy density estimation. Let us briefly discuss the findings
there. The key idea comes from the following refinement of (1.6):

(5.1) E
[
‖s− ŝc‖2

]
= ‖s‖2 + E

[
−‖ŝc‖2 + penc(S)

]
,

where ŝc is as in (1.9) substituting β̂π(ϕ) by the statistics β̂c(ϕ) of (1.13), s⊥ is the
orthogonal projection in (1.5), and penc(S) is defined in terms of an orthonormal
basis G := {ϕ1, . . . , ϕd} of S by the formula:

(5.2) penc(S) ≡ 2
T 2

∑

t≤T

∑

ϕ∈G
ϕ2(∆Xt).
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Equation (5.1) shows that the risk of ŝc moves “parallel” to the expectation of the
observable statistics −‖ŝc‖2 + penc(S), suggesting the selection of the model that
minimizes such statistics. Concretely, given a collection of sieves {Sm,m ∈M}, we
should choose the projection estimator s̃c ≡ ŝcm̂, where

m̂ ≡ argminm∈M
{
−‖ŝcm‖2 + penc(Sm)

}
.

Such an estimator s̃c is called a penalized projection estimator (p.p.e.) since the
role of penc(S) is to penalize large linear models.

In [16], it is shown that the p.p.e. s̃c is adaptive in the class of Besov Lévy
densities of Section 3.2 in the sense that s̃c attains the optimal rate of convergence
O(T−2α/(2α+1)) without using the knowledge of α. Unfortunately, the previous
approach intrinsically requires continuous-time sampling of the process to determine
the jumps ∆Xt. However, the analysis could still be useful if one uses the natural
discrete-based proxies of β̂c and penc, where the jumps ∆Xt are replaced by the
increments Xtk − Xtk−1 . This idea leads to the estimators ŝπ in (1.9) and to the
statistic

(5.3) penπ(S) =
2
T 2

n∑

k=1

∑

ϕ∈G
ϕ2(Xtk −Xtk−1)

as the penalization term. In the light of the previous arguments, we proposed a
discrete-based model selection criterion as follows

m̂π ≡ argminm∈M
{
−‖ŝπm‖2 + penπ(Sm)

}
(5.4)

= argminm∈M



−

∑

ϕ∈Gm
{β̂π(ϕ)}2 + penπ(Sm)





where Gm is an orthonormal basis of Sm, β̂π is given by (1.7), and penπ is given by
(5.3). The resulting estimator

(5.5) s̃ := sπm̂π

will be called (discrete-based) penalized projection estimator.
We hope to extend in a future work the adaptability result in [16] for this discrete-

based p.p.e. In the sequel, we illustrate the performance of these estimators for an
infinite-jump activity Lévy process of relevance in the area of mathematical finance.

6. An Example: Estimation of Variance Gamma Processes.

6.1. The Model

Variance Gamma processes were proposed in [23] (see also [8]) as substitutes to the
Brownian Motion in the Black-Scholes model. Since their introduction, this kind of
processes have received a great dealt of attention, even in the financial industry. For
an introduction to many basic properties of variance Gamma processes and other
related processes, the reader is referred to Knotz et al. [21].

There are two useful representations for this type of processes. A variance Gamma
process X = {X(t)}t≥0 is a Brownian motion with drift, time changed by a Gamma
Lévy process. Concretely,

(6.1) X(t) = θU(t) + σW (U(t)),
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where {W (t)}t≥0 is a standard Brownian motion, θ ∈ R, σ > 0, and U = {U(t)}t≥0

is an independent Gamma Lévy process with density at time t given by

(6.2) ft(x) =
xt/ν−1 exp

(
−xν
)

νt/νΓ
(
t
ν

) .

Notice that E [U(t)] = t and Var [U(t)] = νt; therefore, the random clock U has
a “mean rate” of one and a “variance rate” of ν. There is no loss of generality in
restricting the mean rate of the Gamma process U to one since, as a matter of fact,
any process of the form

θ1V (t) + σ1W (V (t)),

where V (t) is an arbitrary Gamma Lévy process, θ1 ∈ R, and σ1 > 0, has the
same law as a process of the form (6.1) with suitably chosen θ, σ, and ν. This a
consequence of the self-similarity3 property of Brownian motion and the fact that
ν in (6.2) is a scale parameter.

The process X is itself a Lévy process since Gamma processes are subordinators
(see Theorem 30.1 of [29]). Moreover, it is not hard to check that “statistically” X
is the difference of two Gamma Lévy processes (see e.g. (2.1) of [6]):

(6.3) {X(t)}t≥0
D= {X+(t)−X−(t)}t≥0,

where {X+(t)}t≥0 and {X−(t)}t≥0 are Gamma Lévy processes with respective Lévy
measures

ν±(dx) = α exp
(
− x

β±

)
dx, for x > 0.

Here, α = 1/ν and

β± =

√
θ2ν2

4
+
σ2ν

2
± θν

2
.

As a consequence of this decomposition, the Lévy density of X takes the form

(6.4) s(x) =





α
|x| exp

(
− |x|β−

)
if x < 0,

α
x exp

(
− x
β+

)
if x > 0,

where α > 0, β− ≥ 0, and β+ ≥ 0 (of course, |β−| + |β+| > 0). As in the case
of Gamma Lévy processes, α controls the overall jump activity, while β+ and β−

take respectively charge of the intensity of large positive and negative jumps. In
particular, the difference between 1/β+ and 1/β− determines the frequency of drops
relative to rises, while their sum measures the frequency of large moves relative to
small ones.

6.2. The Simulation Procedure

The above two representations provide straightforward methods to simulate a vari-
ance Gamma model. One way will be to simulate the Gamma Lévy processes
{X+(t)}0≤t≤T and {X−(t)}0≤t≤T of (6.3) using the series representation method
introduced in Rosiński [26]. The other approach is to generate the random time
change {U(t)}0≤t≤T of (6.1), and then construct a discrete skeleton from the incre-
ments X(i∆t)−X((i−1)∆t), i ≥ 1. The increments of X are simply simulated using
normal random variables with mean and variances determined by the increments
of U .

3namely, {W (ct)}t≥0
D
= {c1/2W (t)}t≥0, for any c > 0.
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6.3. The Numerical Results

In this part we illustrate the performance of the projection estimators (1.9) and
the model selection criterion described in Section 5 using simulation experiments.
The approximating linear models Sm considered here are the span of the indicator
functions χ[x0,x1] , . . . , χ(xm−1,xm] , where x0 < · · · < xm is a regular partition of an
interval D ≡ [a, b], with 0 < a or b < 0. We perform the following numerical exper-
iment. First, we simulate the variance gamma Lévy process with specified (known)
parameter settings. Then, we apply the penalized projection estimator defined by
(5.4)-(5.5). Finally, to assess the accuracy of the nonparametric estimator, the true
parametric model of s is subsequently fit to the nonparametric estimator using a
least-square errors method. Concretely, if s̃ := ŝπm̂π is the discrete-based p.p.e. and
sθ is the function (6.4), where we set θ := (α, β−, β+), then we find

(6.5) θ̂
NP

:= argminθ
m̂π−1∑

i=0

(s̃(x̄i)− sθ(x̄i)2

where x̄i is the midpoint of the interval [xi, xi+1]. This approach provides a non-
parametric based estimators for the parameters of the variance Gamma process.

Notice that, from an algorithmic point of view, the estimation for the variance
Gamma model using penalized projection is not different from the estimation for
the Gamma process. We can simply estimate both tails of the variance Gamma pro-
cess separately. However, from the point of view of maximum likelihood estimation
(MLE), the problem is numerically challenging. Even though the marginal density
functions have “closed” form expressions4 (see [8]), there are well-documented is-
sues with MLE (see for instance [24]). The likelihood function is highly flat for
a wide range of parameters and good starting values as well as convergence are
critical. Also, the separation of parameters and the identification of the variance
Gamma process from other classes of the generalized hyperbolic Lévy processes is
difficult. In fact, difference between subclasses in terms of likelihood is small. It is
important to mention that these issues worsen when dealing with “high-frequency”
data.

Let us consider a numerical example motivated by the empirical findings of [8]
based on daily returns on the S&P stock index from January 1992 to Septem-
ber 1994 (see their Table I). Using maximum likelihood methods, the annualized
estimates of the parameters for the variance Gamma model were reported to be
θ̂
ML

= −0.00056256, σ̂2
ML

= 0.01373584, and ν̂
ML

= 0.002, from where we obtain
α̂
ML

= 500, β̂+
ML

= 0.0037056, and β̂−
ML

= 0.0037067.
Figures 1 and 2 show respectively the left- and right- tails of the true Lévy

density and the (discrete-based) penalized projection estimator as well as their cor-
responding best-fit variance Gamma Lévy densities using (6.5), and their marginal
probability density functions (pdf) scaled by 1/∆t (the reciprocal of the time span
between observations). The estimation was based on 5000 simulated increments
with ∆t equal to one-eight of a day. The figures seem quite comforting. To get a
better idea of the performance of the method, Figures 3 and 4 show the sampling
distributions of the estimates of α− and β+ obtained from applying the least-square
method to the penalized projection estimators. The histograms are based on 1000
samples of size 5000 with ∆t = 1/8 of a day. This experiment shows clear, though

4 More concretely, the density is terms of Bessel special functions of third kind. For more
information, see also Section 4.1 in Knotz et al. [21].
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not critical, underestimation of the parameter α and overestimation of the param-
eters β’s. A simple method of moments (based on the first four moments) yields
better results (see Figures 5 and 6). Nonparametric methods are not free-lunches
and usually the gain in robustness is paid by a loss in efficiency.

To illustrate the seriousness of applying an efficient estimation method to a
misspecified model let us consider a close relative of the variance Gamma process:
the CGMY model in [6]. This is defined as a pure-jump Lévy process with Lévy
density of the form

(6.6) sm(x) =





α−

|x|υ+1 exp
(
− |x|β−

)
if x < 0,

α+

xυ+1 exp
(
− x
β+

)
if x > 0,

where υ > 0. In the case when α− = 0 and ν = 0, we recover a Gamma Lévy
process, for which MLE are widely available. Let us take α+ = β+ = 1 and υ = .1.
We can estimate the parameter υ using a Zolotarev type estimator. This can be
done so since the CGMY Lévy process is a tempered stable Lévy process, whose
short-term increments behave like stable processes (see Rośınski [27] for details).

The following table shows the sampling average and standard deviations of the
estimators of α+, β+, and υ by two methods based on 100 simulation runs. The first
method estimates υ using the Zolotarev’s estimator υ̂, then computes the piece-wise
constant p.p.e. s̃ of (5.5), and finally, estimate α+ and β+ via the LSE method (6.5)
replacing sθ by the Lévy density sm of (6.6) with θ = (α+, β+) and fixing α− = 0
and υ = υ̂. The second method assumes (erroneously) that the underlying model
is a Lévy gamma process and performs maximum likelihood estimation.

∆t Penalized Projection Estimators/Least-Squares Fit Misspecified Gamma MLE

α̂+
NP

β̂+
NP

υ̂Zolotarev α̂+
MLE

β̂+
MLE

.01 1.03 (0.15) 0.97 (0.14) 0.09 (0.0002) 1.2 (0.08) 0.89 (0.079)
Table 1

Sampling mean in bold and standard errors in parenthesis of the estimators of α+, β+, and υ
in the CGMY model with theoretical values α− = 0, β+ = 1, α+ = 1, and υ = .1. Sample size is

100 paths.

The results above shows that sometime a modestly efficient robust nonparametric
method is preferably to a very efficient estimation method.

Appendix A: Technical Proofs

Proof of Lemma 3.1. The idea is to exploit the well-known decomposition of the
Lévy process as a compound Poisson process X̃ε plus an independent Lévy process
Xε := X − X̃ε with compactly supported Lévy measure νε(dx) := 1{|x|≤ε} ν(dx),
for a suitable chosen ε > 0. Concretely, here

X̃ε
t =

Nt∑

i=1

ξi,

for a homogeneous Poisson process {Nt}t≥0 with intensity λε := ν({|x| > ε}) and
for independent random variables {ξi} with distribution 1

λε
1{|x|>ε}ν(dx). Clearly,

1
t

P [Xt ≥ y] =
1
t

P [Xε
t ≥ y] e−λεt + P [Xε

t + ξ1 ≥ y] e−λεt(λε)

+
∞∑

n=2

P

[
Xε
t +

n∑

i=1

ξi ≥ y
]
e−λεtλnε t

n−1.
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Then, we have
∣∣∣∣
1
t

P [Xt ≥ y]− ν([y,∞))
∣∣∣∣ ≤

1
t

P [Xε
t ≥ y] + |λε P [Xε

t + ξ1 ≥ y]− ν([y,∞))|

+ ν([y,∞))λεt+ λ2
εt.

The second term on the right hand side of this inequality can itself be decomposed
as follows:

|λε P [Xε
t + ξ1 ≥ y]− ν([y,∞))| ≤

∫ y+η

y−η
s(x) dx+ λε P [|Xε

t | ≥ η]

+ ν([y,∞)) P [|Xε
t | ≥ η]

for each η > 0 such that a− η > ε. Since s is bounded off the origin, there exists a
k > 0 such that ∫ y+η

y−η
s(x)dx ≤ k η

for all y ∈ D. Fix 0 < η < 1
T ∧ a and 0 < ε < a− η. Then,

sup
y∈D

∣∣∣∣
1
t

P [Xt ≥ y]− ν([y,∞))
∣∣∣∣ ≤

1
t

P [Xε
t ≥ a] +

k

T
+ ν([a,∞)) P [|Xε

t | ≥ η]

+ λε P [|Xε
t | ≥ η] + ν([a,∞))λεt+ λ2

εt.

Finally, since limt→0
1
t P [Xε

t ≥ a] = 0 and limt→0 P [|Xε
t | ≥ η] = 0, we can choose

δT > 0 sufficiently small to make each of the terms smaller than 1/T when t < δT .

Proof of Theorem 4.1.

(i) Fix a Lévy density s0 ∈ Θα (L/2; [a, b]) such that s0(x) > 0, for all x ∈ R0 :=
R\{0}, and a constant κ > 0. Also, let g : R → R+ be a symmetric function
with compact support Kg, satisfying (3.5) with L/2 (instead of L). Moreover,
the support of x → g (κ(x− x0)), denoted by K, does not contain the origin
and also,

s0(x)− κ−αg (κ(x− x0)) > 0, ∀x ∈ R0.

Let
sθ(x) := s0(x) + θT−

α
2α+1 g

(
κT

1
2α+1 (x− x0)

)
, x ∈ R0,

and notice that sθ ∈ Θ whenever |θ| < κ−α.
(ii) Without loss of generality we assume that K ∩ [−1, 1] = ∅. We follow the

notation in [29] (Section 33). Let P (T )
θ be the distribution (on D[0, T ]) of

a Lévy process {X(t)}0≤t≤T with Lévy density sθ (the other two parame-
ters of the generating triplet remain constant). We proceed to prove that{

P (T )
θ : θ ∈ (−κ−α, κ−α)

}
is LAN at θ = 0 (see e.g. Definition II.2.1 in [19].

By Theorems 33.1 and 33.2 in [29], P (T )
θ ≈ P (T )

0 and the likelihood function,

Lθ(ω) := d P (T )
θ

d P (T )
0

(ω) is given by

Lθ(ω) := exp

{∫ T

0

∫

K
ln

[
1 +

θT−
α

2α+1

s0(x)
g
(
κT

1
2α+1 (x− x0)

)]
ξ(dt, dx;ω)

− θT 1− α
2α+1

∫

K
g
(
κT

1
2α+1 (x− x0)

)
dx

}
,
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where ξ(dt, dx;ω) is the random measure on R+ × R0 associated with the
jumps of ω ∈ D[0, T ]; that is,

ξ(A;ω) := #{(t, x) : ∆wt := wt − wt− = x}, A ⊂ R+ × R0.

Under P (T )
0 , ξ is a Poisson random measure with mean measure s0(x)dxdt.

We denote ξ̄(dt, dx;ω) := ξ(dt, dx;ω) − s0(x)dxdt. The likelihood Lθ(ω) can
be written as follows:

Lθ(ω) = exp
{
θ∆

T
− θ2

2
σ2
T

+ r
T

(θ)
}
,

where

∆
T

= T−
α

2α+1

∫ T

0

∫

K
s−1

0 (x)g
(
κT

1
2α+1 (x− x0)

)
ξ̄(dt, dx),

σ2
T

= T 1− 2α
2α+1

∫

K
s−1

0 (x)g2
(
κT

1
2α+1 (x− x0)

)
dx,

r
T

(θ) = −θ
2

2
T−

2α
2α+1

∫ T

0

∫

K
s−2

0 (x)g2
(
κT

1
2α+1 (x− x0)

)
ξ̄(dt, dx)

+
∫ T

0

∫

K
R
(
θT−

α
2α+1 s−1

0 (x)g
(
κT

1
2α+1 (x− x0)

))
ξ(dt, dx),

and R(u) := ln(1 + u)− u+ u2

2 . We want to prove that there are nomalizing
constants ϕT > 0 such that

L P (T )
0

(ϕT∆
T

) D→ N (0, 1), ϕ2
Tσ

2
T
→ 1, and r

T
(θ)

P (T )
0→ 0

as T →∞. To prove the first limit, we invoke the CLT for Poisson integrals by
verifying the Liapunov condition (see Theorem 1.1 and Remark 1.2 of [22]).
Indeed, for T > 1, we have that

T−
α(2+δ)
2α+1

∫ T

0

∫

K
s−2−δ

0 (x)g2+δ
(
κT

1
2α+1 (x− x0)

)
(s0(x)) dxdt =

κ−1T 1−α(2+δ)
2α+1 − 1

2α+1

∫

Kg
s−1−δ

0 (κ−1T−
1

2α+1u+ x0)g2+δ (u) du T→∞−→ 0.

Similarly, for large enough T ,

Var (∆
T

) = T−
2α

2α+1

∫ T

0

∫

K
s−2

0 (x)g2
(
κT

1
2α+1 (x− x0)

)
(s0(x)) dxdt =

T→∞−→ κ−1s−1
0 (x0)

∫

Kg
g2(u)du.

Then, L P (T )
0

(∆
T

) D→ N (0, I2
0 ) with I2

0 := κ−1s−1
0 (x0)

∫
Kg g

2(u)du, and σ2
T
→

I2
0 . We now verify that r

T
(θ) vanishes in probability. Notice that the first

term of r
T

converges to 0 since its mean is 0 and its variance vanishes.
Similarly, the second term of rT (θ) converges to 0 in probability because its
mean and variance both goes to 0. Indeed, using that |R(u)| ≤ |u|3/3, the
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absolute value of its expectation satisfies
∣∣∣∣∣

∫ T

0

∫

K
R
(
θT−

α
2α+1 s−1

0 (x)g
(
κT

1
2α+1 (x− x0)

))
(s0(x))dxdt

∣∣∣∣∣

≤ |θ|
3

3
T 1− 3α

2α+1

∫

K
s−2

0 (x)g3
(
κT

1
2α+1 (x− x0)

)
dx

T→∞−→ 0.

A similar reasoning applies to the variance. Therefore, {P (T )
θ }θ∈(−κ−α,κ−α)

is Locally Asymptotically Normal (LAN) at θ = 0 (with the normalizing
constants ϕT := I−1

0 ).
(iii) By Theorem II.12.1 and Remark II.12.2 in [19], if θ̂

T
is any estimator of θ

based on {X(t)}0≤t≤T , then

(A.1) lim inf
T→∞

sup
|θ|<κ−α

E θ

[
`0

(
I0

(
θ̂
T
− θ
))]
≥ B,

where B := E
[
`0(Z)χ[|Z|<I0κ−α/2]

]
and Z ∼ N (0, 1). Now, let ŝ

T
(·) be an

arbitrary estimator based on {X(t)}0≤t≤T and let

θ̂
T

:= T
α

2α+1 g−1(0) (ŝ
T

(x0)− s0(x0)) .

Since θ = T
α

2α+1 g−1(0) (sθ(x0)− s0(x0)) , we can write

g(0)
(
θ̂
T
− θ
)

= T
α

2α+1 (ŝ
T

(x0)− sθ(x0)) .

If we take `0(u) := `
(
g(0)I−1

0 u
)
, (A.1) becomes:

B ≤ lim inf
T→∞

sup
|θ|<κ−α

E θ

[
`0

(
I0

(
θ̂
T
− θ
))]

= lim inf
T→∞

sup
|θ|<κ−α

E θ

[
`
(
T

α
2α+1 (ŝ

T
(x0)− sθ(x0))

)]
.

Since {sθ : θ ∈ (−k−α, k−α)} ⊂ Θ,

(A.2) lim inf
T→∞

sup
s∈Θ

E s

[
`
(
T

α
2α+1 (ŝ

T
(x0)− s(x0))

)]
≥ B,

where

(A.3) B := 2−3/2π−1/2

∫

|z|<I0κ−α/2
`(g(0)I−1

0 z)e−z
2/2dz.

This implies (4.1) because the lower bound B does not depend on the family
of estimators ŝ

T
. Indeed, for each ε > 0, let ŝ(ε)

T
be such that

sup
s∈Θ

E s

[
`
(
T

α
2α+1

(
ŝ

(ε)
T (x0)− s(x0)

))]

< inf
ŝ
T

sup
s∈Θ

E s

[
`
(
T

α
2α+1 (ŝ

T
(x0)− s(x0))

)]
+ ε.

Taking the lim inf as T →∞ on both sides, we obtain (4.1) since ε is arbitrary.

Proof of Corollary 4.2.
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(i) Following the same reasoning as in Theorem 4.1, we first prove that for any
family of estimators {ŝ

T
}T>0 and arbitrary points {x

T
}T>0 ⊂ (a, b),

(A.4) lim inf
T→∞

sup
s∈Θ

E s

[
`
(
T

α
2α+1 (ŝ

T
(x

T
)− s(x

T
))
)]
≥ C

for some constant C > 0, which is independent of the family of estimators
and of the points. Fix a Lévy density s0 ∈ Θα (L/2; [a, b]) such that s0(x) > 0
for all x ∈ R0 := R\{0}, and a constant κ > 0. Again, let g : R → R+

be a symmetric function with compact support Kg, satisfying (3.5) with L/2
(instead of L). Moreover, for any y ∈ (a, b), the support of x → g (κ(x− y))
does not contain the origin and

s0(x)− κ−αg (κ(x− y)) > 0, ∀x ∈ R0.

Let
s
θ,T

(x) := s0(x) + θT−
α

2α+1 g
(
κT

1
2α+1 (x− x

T
)
)
, x ∈ R0,

for |θ| < κ−α. Let P (T )
θ be the distribution (on D[0, T ]) of a Lévy process

{X(t)}0≤t≤T with Lévy density s
θ,T

. Following the proof of Theorem 4.1,

{P (T )
θ : θ ∈ (−κ−α, κ−α)} is LAN at θ = 0 with the normalizing constants

ϕ
T

:= κ2

(∫

Kg
s−1

0 (κ−1T−
1

2α+1u+ x
T

)g2 (u) du

)−2

,

where Kg denotes the support of g and it is being assumed that [−1, 1] ∩
∪y∈[a,b]{y+κ−1Kg} = ∅. Observe that there is anm > 0 for which infT≥1 ϕT ≥
m.

(ii) By Theorem II.12.1 and Remark II.12.2 in Ibragimov & Has’minskii (1981),
for any δ > 0,

(A.5) lim inf
T→∞

sup
|θ|<δϕ

T

E θ

[
`0

(
ϕ−1
T

(
θ̂
T
− θ
))]
≥ C,

where C := E
[
`0(Z)χ[|Z|<δ/2]

]
and Z ∼ N (0, 1). Since `0(|y|) is increasing

in y,

(A.6) lim inf
T→∞

sup
|θ|<δϕ

T

E θ

[
`0

(
m−1

(
θ̂
T
− θ
))]
≥ C.

Now, setting,
θ̂
T

:= T
α

2α+1 g−1(0) (ŝ
T

(x
T

)− s0(x
T

)) ,

it follows that

sup
s∈Θ

E s

[
`
(
T

α
2α+1 (ŝ

T
(x

T
)− s(x

T
))
)]
≥ sup
|θ|<δϕ

T

E θ

[
`
(
g(0)

(
θ̂
T
− θ
))]

.

Taking lim inf as T →∞, (A.4) is obtained with

(A.7) C = 2−3/2π−1/2

∫

|z|<δ/2
`(g(0)mz)e−z

2/2dz.
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

(iii) To obtain (4.2), for each ε > 0, let ŝ(ε)
T
∈ Θ and x(ε)

T
∈ (a, b) be such that

sup
s∈Θ

E s

[
`
(
T

α
2α+1

(
ŝ

(ε)
T

(
x(ε)
T

)
− s

(
x(ε)
T

)))]
≤

inf
x∈(a,b)

inf
ŝ
T

sup
s∈Θ

E s

[
`
(
T

α
2α+1 (ŝ

T
(x)− s(x))

)]
+ ε.

Next, take the lim inf as T →∞ on both sides above and apply (A.4).
(iv) We now prove (4.4). Fix a measurable estimator ŝ

T
and a s ∈ Θ. By Fubini’s

Theorem,

E s

[∫ b

a

(ŝ
T

(x)− s(x))2
dx

]
=
∫ b

a

E s

[
(ŝ
T

(x)− s(x))2
]
dx.

Now, for each ε > 0, there exists an x
(ε)
0 ∈ (a, b) satisfying

1
b− a

∫ b

a

E s

[
(ŝ
T

(x)− s(x))2
]
dx ≥ E s

[(
ŝ
T

(
x

(ε)
0

)
− s

(
x

(ε)
0

))2
]
− ε.

Then,

1
b− a sup

s∈Θ
E s

[∫ b

a

(ŝ
T

(x)− s(x))2
dx

]
≥ sup
s∈Θ

E s

[(
ŝ
T

(x(ε)
0 )− s(x(ε)

0 )
)2
]
− ε

≥ inf
x∈(a,b)

sup
s∈Θ

E s

[
(ŝ
T

(x)− s (x))2
]
− ε.

Letting ε→ 0, (4.4) becomes a consequence of (4.2) with `(u) = u2.

Appendix B: Figures
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Fig 1. Penalized projection estimation of the left-tail of the variance gamma Levy density.
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Fig 2. Penalized projection estimation of the right-tail of the variance Gamma Levy density.
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Fig 3. Sampling Distribution for the Estimates of α− obtained from the PPE and the LSE
method.
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Fig 4. Sampling Distribution for the Estimates of β+ obtained from the PPE and the LSE
method.
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In preparation.
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On the Estimation of Symmetric

Distributions under Peakedness Order

Constraints

Javier Rojo1,∗ and José Batún-Cutz

Rice University and Universidad Autónoma de Yucatán, Mérida, México

Abstract: Consider distribution functions F and G and suppose that F is
more peaked about a than G is about b. The problem of estimating F or G,
or both, when F and G are symmetric, arises quite naturally in applications.
The empirical distribution functions Fn and Gm will not necessarily satisfy
the order constraint imposed by the experimental conditions. Rojo and Batun-
Cutz (2007) proposed some estimators that are strongly uniformly consistent
when bothm and n tend to infinity. However the estimators fail to be consistent
when only either m or n tend to infinity. Here estimators are proposed that
circumvent these problems and the asymptotic distribution of the estimators
is delineated. A simulation study compares these estimators in terms of Mean
Squared Error and Bias behavior with their competitors.
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1. Introduction

The concept of stochastic order was pioneered by Lehmann (1955), and applica-
tions to hypotheses testing were discussed in Lehmann (1959), henceforth referred
to as TSH-1. Lehmann and Rojo (1992) provided characterizations of stochastic
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ordering in terms of the maximal invariant with respect to the group of mono-
tone transformations, and connections with other partial orderings were provided.
Since the publication of TSH-1, there has been a large number of papers discussing
various types of stochastic orders and their properties. Thus, one finds a large liter-
ature on stochastic orders in Economics (e.g. first-, second-, third-order stochastic
dominance), reliability (e.g. IFR, IFRA, NBU, etc.), and applied probability (e.g.
Laplace transform and dispersive orders). Marshall and Olkin (2007) and Shaked
and Shantikumar (2007) are excellent references to the literature on stochastic or-
ders.

The attention to this area of statistics and applied probability is well deserved.
These concepts arise naturally in many applications in engineering, survival analy-
sis, biology, economics, etc.

In corrosion engineering, for example, the times until pitting of metals immersed
in a corrosive environment are measured under different solution corrosivities to
discern the impact of the solution acidity on the pitting corrosion times. Shibata
and Takeyama (1977) present data which strongly supports the belief that the times
until pitting should be shorter in some sense, for the more corrosive environment.
In toxicity studies, cells are grown in environments containing different levels of
toxic materials (e.g. Arenaz et al (1992)). Invariably, the data supports the intu-
itive notion that the stronger the toxic solution is, the shorter the lifetimes of the
organisms.

Another set of examples arises from clinical trials. This is illustrated by a clinical
trial run to evaluate the efficiency of maintenance chemotherapy for acute myelon-
geneous leukemia (AML). The trial was conducted at Stanford University (Embury
et al (1977)). After reaching a state of remission through treatment by chemother-
apy, the patients who entered the study were randomized into two groups. The first
group received maintenance chemotherapy; the second group did not. One would
then expect that in this case, the survival times in the control group would be
stochastically smaller than those in the first group.

Stochastic ordering, together with failure rate ordering, and monotone likelihood
ratio ordering, are examples of location orderings. There are situations, however,
when the interest lies in comparing distributions based on their spread rather than
on their location.

Various concepts of spread, concentration, or dispersion have appeared in the lit-
erature. For example, Brown and Tukey (1946), Fraser (1957), Bickel and Lehmann
(1979), Lehmann (1988), Doksum (1969), and Shaked (1980), define F to be more
dispersive than G , denoted as F >d G, if, for every u > v,

(1.1) F−1(u)− F−1(v) ≥ G−1(u)−G−1(v).

Shaked (1982), Bartoszewicz (1985a, 1985b, 1986), Oja (1981), and Rojo and He
(1991), among others, have discussed various characterizations and properties of the
dispersive order. Doksum (1969) utilized this concept to study power properties
of rank tests, and showed that the power of certain rank tests is isotonic with
respect to this order. Rojo (1995b, 1999) considered the problem of estimating
the quantile function F−1 and the distribution function F when F <d G, and
the asymptotic theory of the resulting estimators was delineated. Rojo and Wang
(1994) also showed that the power of tests based on L-statistics is isotonic with
respect to the dispersive order. For other properties of the dispersive order, and
connections with other partial orderings, see Bickel and Lehmann (1979), Proschan
(1965), Karlin (1968), Shaked (1980, 1982), and Schweder (1982). When F and G
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are assumed symmetric, (1.1) can be seen to be equivalent to

F−1(u)− F−1(1/2) ≥ (≤) G−1(u)−G−1(1/2)

depending on whether u ≥ (≤) 1/2.
Birnbaum (1948) proposed a different concept of dispersion based on the dis-

tribution functions rather than on the quantile functions. According to Brinbaum,
the distribution function F is more peaked about the point a than the distribution
function G is about the point b if, for all x ≥ 0,

(1.2) F ((x+ a)−)− F (−x+ a) ≥ G((x+ b)−)−G(−x+ b),

where h(x−) = limε↓0 h(x − ε). We will write F >p G whenever (1.2) holds. It is
easy to see that the condition (1.2) is equivalent to

(1.3)
F (x−) ≥ G(x−) for x ≥ 0
F (x) ≤ G(x) for x < 0.

whenever F and G are symmetric about the point 0.
When F and G are continuous, it is easy to see that (1.2) is equivalent to

requiring that |X − a| be stochastically smaller than |Y − b|, and, although in
general F <d G 6⇒ F >p G and F >p G 6⇒ F <d G, it is easy to verify that
F <d G ⇒ F >p G, when F and G are symmetric and continuous. When a and
b in (1.2) are, respectively, the means of F and G, the condition (1.2) implies the
obvious order on the variances of F and G.

An interesting example from statistical genetics, discussed in Rojo et al (2007),
illustrates the importance of this concept in applications. Haseman-Elston (1972)
proposed a regression model to assess the effect of a candidate gene on a phe-
notype when using sib-paired data. There have been some modifications of the
initial proposal (see e.g. Elston et al. (2000)). The original model, Haseman-Elston
(1972), represents the expected value of the squared phenotypic differences as
a linear function of the proportion of alleles shared identical-by-descent (IBD)
at the locus of interest. Let λi represent the proportion of alleles shared iden-
tical by descent (λi = 0, 1

2 , or 1). The Haseman and Elston (1972) regression
model may then be written as follows: E(Xi|λi) = α + βλi, where Xi repre-
sents the squared sib-pair difference for the ith sib-pair conditional on λi. Writing
Z1i = θ+g1i+ε1i and Z2i = θ+g2i+ε2i where Z1i and Z2i represent, respectively,
the phenotype values for siblings one and two, and where θ is the population mean,
and gij and εij are the genetic and the residual effects, respectively, the model is
then represented as

E(Xj |λj) = η2
ε + 2(1− λj)η2

g

where, η2
ε = E((ε1i− ε2i)2) and η2

g represents the variance in the trait due to allelic
variation at the locus of interest. As a consequence of linkage between the candidate
gene and the phenotype, siblings sharing two alleles IBD at the locus of interest will
tend to be more similar than siblings sharing one allele IBD, and siblings sharing
one allele IBD will in turn be more similar than siblings sharing no alleles IBD.
It is then clear that phenotypical similarity of sibs within the same pair is being
measured in terms of the spread of the distribution of the differences of the siblings’
phenotypical measurements.

Existing sib-paired data illustrates very clearly that the distribution functions of
sib-pair differences are symmetrically distributed. This will happen, for example, if
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(X − µX , Y − µY ) has the same distribution as (µX −X,µY − Y ), as it happens
under the assumption of a bivariate normal distribution, and if the means µX and
µY are equal, then the sib-pair differences are symmetrically distributed. When the
candidate gene is linked to the phenotype of interest, the cumulative distributions
of the differences within sib-pairs are ordered by peakedness. This is illustrated
by sib-paired data on plasma Lipoprotein (a) data. Figure 1 shows the empirical

0

0.2

0.4

0.6

0.8

1

-50 -25 0 25 50 75

Sib-pair Differences in Lp(a)

IBD 2

IBD 1

IBD 0

Fig 1. Empirical distribution functions of phenotypic differences for the sib-pair data.

distribution functions for plasma Lipoprotein (a) differences within sib-pairs for a
sample of Caucasian individuals from the Dallas metroplex area. The pairs of sib-
lings were classified into groups according to the number of shared alleles identical
by descent.

Note that the assumptions of symmetry and peakedness are close to being satis-
fied, but the plots also show areas where these characteristics do not hold. We will
illustrate our estimators later in section 4, by computing them for this example.

The points a and b about which peakedness of F and G will obtain, will be
assumed known throughout this work. In the linkage example to be considered in
section 4, the assumption of known a and b can be justified under the assumption of
bivariate normality of the siblings’ phenotypes with equal means. This is a common
assumption in the literature. Thus, irrespective of whether a and b are known or un-
known, the difference of the phenotypes is always symmetric about zero. Dropping
the assumption of bivariate normality of the sib-pairs phenotypes, existing models,
see e.g. Liu (1988) Table 15.7, yield a zero mean for the phenotypic differences. We,
therefore, will assume that a and b are zero.

The goals of this paper are to develop estimators for symmetric F and G, which
satisfy (1.2), and to delineate their asymptotic theory.

Under the assumption that F and G are discrete distributions satisfying (1.2), El
Barmi and Rojo (1997) provided the nonparametric maximum likelihood estimators
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of F and G and tests were given to test the hypothesis of homogeneity of F and G
against the alternative that F and G satisfy (1.2). Rojo, Batun, and Durazo (2007)
proposed estimators for continuous F and G, when (1.2) holds and the case of
censored data was also considered, but without the symmetry assumption. Rojo and
Batun-Cutz (2007) proposed estimators for symmetric F and G when (1.2) holds
using results from Schuster (1975), and the asymptotic theory was delineated for the
case when both n and m→∞. El Barmi and Mukerjee (2008), following the ideas in
Rojo (2004) and Rojo and Batun (2007), proposed estimators which are consistent
for F (G) and their asymptotic theory was developed. Unfortunately, the proofs of
their asymptotic results for the estimators of F and G depend on letting both n
and m increase to infinity. The purpose of this paper is to consider modifications
of the estimators proposed by Rojo and Batun-Cutz (2007) that yield consistent
estimators for F (G) when only n (m)→∞. The asymptotic distribution theory is
considered and a simulation study compares the estimators to the estimator of El
Barmi and Mukerjee (2008).

The organization of this paper is as follows: Sections 2 proposes the estimators
and finite sample properties are discussed. Section 3 delineates the asymptotic the-
ory showing that the estimators are strongly and uniformly consistent and their
asymptotic theory is developed. Section 4 illustrates the new estimators using the
sib-pair data, and section 5 discusses the results of computer simulations which
compare the bias and mean squared error of the new estimators with the bias and
mean squared error of the estimators of Rojo and Batun-Cutz (2007) and El Barmi
and Mukerjee (2008).

Although the estimators proposed in Rojo and Batun-Cutz (2007) have larger
absolute bias than the estimators proposed here, the selection of the better esti-
mators based on Mean Squared Error (MSE) behavior is not as clear. Whereas the
new estimators have smaller MSE in a neighborhood of zero, the estimators of Rojo
and Batun-Cutz have smaller MSE in the tails of the distributions, and the region
of the support of the distribution where the latter estimators behave better seems
to increase as the tail-heaviness of the distributions increase.

2. New Estimators and Their Finite Sample Properties

Let X1, . . . , Xn and Y1, . . . , Ym be independent random samples from the symmetric
distributions (about 0) F and G respectively, and let Fn and Gm be the empirical
distribution functions based on X1, . . . , Xn and Y1, . . . , Ym. Suppose than F >p G.
Rojo and Batun-Cutz (2007) considered the problem of the estimation of F and
G under the peakedness restriction and proposed the following strongly uniformly
consistent estimators

(2.1) F 1
n,m = Φ1(Φ2(Fn,Φ1(Gm)))

(2.2) F 2
n,m = Φ2(Φ1(Fn),Φ1(Gm)),

where Φ1 and Φ2 are operators defined by

Φ1(f)(x) =
1
2

(f(x) + 1− f(−x−)), and

Φ2(f, g)(x) =
{

max{f(x), g(x)} if x ≥ 0
min{f(x), g(x)} if x < 0.
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Note that the operator Φ1 symmetrizes the function f , Schuster (1975), and the
operator Φ2 imposes the “stochastic order” restriction (see, e.g., Lo (1987), Rojo
and Ma (1996), and Rojo (2004)). Unfortunately the estimators F in,m, for i = 1, 2
do not converge to F when only n→∞. This follows since, for example, for F 2

n,m

when x > 0 and ε > 0,

lim
n→∞

P [F 2
n,m(x)− F (x) > ε] ≥ P [Φ1(Gm(x))− F (x) > ε] > 0.

This is a drawback of F 2
n,m that is also shared by F 1

n,m and Gin,m for i = 1, 2,
and the strong uniform consistency of these estimators requires that both m and n
tend to infinity. To circumvent this problem, new estimators are proposed here.

2.1. Definition of the New Estimators

Let F̂n = Φ1(Fn) and Ĝm = Φ1(Gm) be the symmetrized empirical distribution
functions (Schuster, 1975). Then the empirical distribution function, and the sym-
metrized empirical distribution function of the combined samples are defined as
follows:

Cn,m =
n

m+ n
Fn +

m

n+m
Gm and

Ĉn,m = Φ1(Cn,m) =
n

m+ n
F̂n +

m

n+m
Ĝm(2.3)

respectively. Then our new estimators for F and G are

(2.4) F̂ 1
n,m = Φ1(Φ2(Fn, Cn,m)),

(2.5) Ĝ1
n,m = Φ1(Φ∗2(Gm, Cn,m)),

(2.6) F̂ 2
n,m = Φ2(Φ1(Fn),Φ1(Cn,m)), and

(2.7) Ĝ2
n,m = Φ∗2(Ĝm, Ĉn,m),

where

Φ∗2(f, g)(x) =
{

min{f(x), g(x)} if x ≥ 0
max{f(x), g(x)} if x < 0.

Note that the estimators F̂ 1
n,m and Ĝ1

n,m first impose the constraint of “stochastic
order” by requiring that the estimator of F (G) be larger (smaller) than Cn,m
for x ≥ 0 and smaller (larger) than Cn,m for x < 0. The second requirement of
symmetry is then imposed by the operator Φ1. By contrast, the estimators F̂ 2

n,m

and Ĝ2
n,m, first impose the constraint of symmetry and then, through the operator

Φ2, the constraint of “stochastic order” is imposed.
El Barmi and Mukerjee (2008) proposed estimators for F and G when F <p G.

In our notation and making the appropriate change for the case F >p G, their
estimator for F is given, for x ≥ 0, by

F ∗nm(x) =
1
2

(1 + max
{
Fn(x)− Fn(−x−), Cnm(x)− Cnm(−x−)

}
).
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This estimator is the same as our estimator F̂ 2
n,m since for x ≥ 0,

F̂ 2
n,m(x) = max

{
1
2

(1 + Fn(x)− Fn(−x−)),
1
2

(1 + Cnm(x)− Cnm(−x−))
}

=
1
2

+
1
2

max
{
Fn(x)− Fn(−x−), Cnm(x)− Cnm(−x−)

}
)

= F ∗nm(x).

Therefore, by symmetry, F̂ 2
n,m = F ∗nm.

2.2. Bias Functions

The operator Φ1 does not introduce any bias in the “symmetrization” procedure.
In fact, it is well known that F̂n and Ĝm are unbiased estimators for F and G,
and have smaller variance than Fn and Gm respectively. However, the operators
Φ2 and Φ∗2 do introduce bias when estimating F and G. The bias function of the
estimators are discussed next and compared to the estimator provided by El Barmi
and Mukerjee (2008).

For x ≥ 0 define F+
n (x) = 1

n

∑n
i=1 I[−x≤Xi≤x], F

+∗
nm = max{F+

n ,
nF+

n +mG+
m

n+m } and
finally, let F ∗nm = 1

2 (1 + F+∗
nm); G+

m, G+∗
n,m and G∗n,m are defined similarly. The

estimator F ∗nm is the estimator for F studied by El Barmi and Mukerjee (2008)
following ideas of Rojo (2004). Note that for x ≥ 0,

E(F ∗nm(x)) =
1
2

+
1
2
E(F+∗

nm(x))

=
1
2

+
1
2
E{F+

n (x) + max{0, m

m+ n
(G+

m(x)− F+
n (x))}}

=
1
2

+
1
2
E(F+

n (x)) +
m

2(m+ n)
E{max(0, G+

m(x)− F+
n (x))}

and since 1
2 + 1

2E(F+
n (x)) = F (x),

Bias(F ∗nm(x)) =
m

2(m+ n)
E{max(0, G+

m(x)− F+
n (x))}.(2.8)

Note that Bias(F ∗nm(x))→ 0 as n
m →∞. Since our estimator F̂ 2

nm defined by (2.6)
turns out to be equal F ∗nm, then its bias function is also given by (2.8).

Now consider the estimator F̂ 1
nm given by (2.4). For x ≥ 0,

F̂ 1
n,m(x) = Φ1(max(Fn(x), Cnm(x)))

=
1
2
{1 + max(Fn(x), Cnm(x))−min(Fn(−x−), Cnm(−x−))}

=
1
2
{

1 + Fn(x)− Fn(−x−) + max(0, Cnm(x)− Fn(x))

+ max(0, Fn(−x−)− Cnm(−x−))
}
.

Thus, E(F̂ 1
n,m(x)) = F (x)+ 1

2E(max(0, Cnm(x)−Fn(x)))+ 1
2E(max(0, Fn(−x−)−
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Cnm(−x−))) and then, for x ≥ 0

Bias(F̂ 1
n,m(x)) =

1
2
E(max(0,

m

n+m
(Gm(x)− Fn(x))))

+
1
2
E(

m

n+m
max(0, Fn(−x−)−Gm(−x−)))

=
m

2(m+ n)
{E(max(0, Gm(x)− Fn(x)))

+E(max(0, Fn(−x−)−Gm(−x−)))
}

≥ m

2(m+ n)
E(max(0, G+

m(x)− F+
n (x))) = Bias(F ∗nm).

This result will also follow from the fact that F̂ 1
nm >p F̂

2
nm = F ∗nm.

Next consider the estimator F 2
nm defined in equation (2.2) and in Rojo and

Batun-Cutz (2007):

F 2
nm(x) = max

{
1
2

(1 + Fn(x)− Fn((−x)−)),
1
2

(1 +Gm(x)−Gm((−x)−))
}
.

It follows easily that E(F 2
nm(x)) = F (x) + 1

2E(max(0, G+
m(x)−F+

n (x))) and hence
Bias(F 2

nm(x)) = 1
2E(max(0, G+

m(x)− F+
n (x))) > Bias(F ∗nm), for x ≥ 0.

Finally, consider the estimator F 1
nm given in Rojo and Batun-Cutz (2007). For

x ≥ 0

F 1
nm(x) =

1
2

{
1 + max(Fn(x),

1
2

(1 +Gm(x)−Gm((−x)−)))

−min(Fn(−x),
1
2

(1 +Gm((−x)−)−Gm((x))))
}

=
1
2

(1 + Fn(x)− Fn((−x)−)) +
1
2

max(0,
1
2

(1− 2Fn(x) +G+
m(x)))

+
1
2

max(0,
1
2

(−1 + 2Fn((−x)−) +G+
m(x))).

Therefore,

E(F 1
nm(x)) = F (x) +

1
4
E(max(0, (1− 2Fn(x) +G+

m(x))))

+
1
4
E(max(0, (−1 + 2Fn((−x)−) +G+

m(x)))).

Then, for x ≥ 0,

Bias(F 1
nm(x)) =

1
4
E
(
max{0, G+

m(x)− F+
n (x)− Fn((−x)−)− Fn(x) + 1}

)

+
1
4
E
(
max{0, G+

m(x)− F+
n (x)− 1 + Fn(x) + Fn((−x)−)}

)
.

The last expression is then seen to be equal to

1
4
E(max{max(0, G+

m(x)− F+
n (x)− Fn((−x)−)− Fn(x) + 1),

max(G+
m(x)−F+

n (x)+Fn((−x)−)+Fn(x)−1, 2(G+
m − F+

n )})

≥ 1
4
E(max(0, 2(G+

m(x)− F+
n (x)))) = Bias(F ∗n,m).
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The corresponding inequalities for the case of x < 0 follow by symmetry. Similar
results may be obtained for the estimators G1

n,m = Φ1(Φ∗2(Φ1(Fn), Gm)), G2
n,m =

Φ∗2(Φ1(Fn),Φ1(Gm)), and Ĝ1
n,m and Ĝ2

n,m. It is easy to see that all the estimators
for F have positive (negative) bias for x > 0 (x < 0), while the estimators for G have
negative (positive) bias for x > 0 (x < 0). The following proposition summarizes
the results about the bias functions.

Proposition 1. Let F >p G be symmetric distribution functions, and let X1, . . . , Xn

and Y1, . . . , Ym be independent random samples from F and G respectively. The bias
functions of the estimators for F and G given by (2.1), (2.2), (2.4), (2.5), (2.6),
and (2.7), satisfy the following properties. For all x,

(i)|Bias(F̂ 1
n,m(x))| ≥ |Bias(F̂ 2

n,m(x))|
=

m

2(m+ n)
E{max(0, G+

m(|x|)− F+
n (|x|)} = |Bias(F ∗n,m(x))|

(ii) |Bias(F 1
n,m(x))| ≥ |Bias(F 2

n,m(x))| ≥ |Bias(F̂ 2
n,m(x))|

(iii) |Bias(Ĝ1
n,m(x))| ≥ |Bias(Ĝ2

n,m(x))|=− m
2(m+n)E{min(0, F+

n (|x|)−G+
m(|x|))}

(iv) |Bias(G1
n,m(x))| ≥ |Bias(G2

n,m(x))| ≥ |Bias(Ĝ2
n,m(x))|.

2.3. Estimators as Projections onto Appropriate Convex Spaces

Recall the definitions of the new estimators given by (2.4) - (2.7). Schuster (1975)
showed that the operator Φ1 projects its argument to its closest symmetric distribu-
tion. That is, letting F be the convex set of symmetric distributions about zero, then
for an arbitrary distribution H, ‖ Φ1(H)−H ‖∞= infF∈F ‖ H − F ‖∞. Rojo and
Ma (1996), and Rojo and Batun-Cutz (2007) have shown that the operator Φ2 has
the property that for arbitrary distributions H and G, |Φ2(H(x), G(x))−H(x)| =
infF∈F∗ |F (x) − G(x)|, where F∗ is the convex set of distributions F satisfying
(1.3). Thus, for F and G distribution functions let

F1 = {distribution functions F satisfying (1.3) with G replaced by Cn,m}

F∗1 = {symmetric distributions F satisfying (1.3) with G replaced by Φ1(Cn,m)}

and F∗2 = {all symmetric at 0 distribution functions}.

Thus the estimator F̂ 2
n,m first projects Fn onto F∗2 and then projects Φ1(Fn)

onto F∗1. By contrast, the estimator F̂ 1
n,m first projects Fn onto F1 to obtain

Φ2(Fn, Cn,m) and then projects the latter onto F∗1. With appropriate changes in
the above notation, similar comments hold for the estimators Ĝin,m for i = 1, 2.

2.4. Peakedness Order of New and Previous Estimators

By construction, the estimators F in,m and F̂ in,m, for i = 1, 2 are more peaked than
the estimators Gin,m and Ĝin,m, respectively. Rojo and Batun-Cutz (2007) showed
that F 1

n,m >p F
2
n,m. The next theorem provides comparisons in terms of peakedness

for several of the estimators and provides a simple relationship between F 2
n,m and

F̂ 2
n,m.
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Lemma 1. Let F >p G be symmetric distribution functions, and let X1, . . . , Xn

and Y1, . . . , Ym be independent random samples from F and G respectively. Consider
the estimators for F and G given by (2.1), (2.2), (2.4), (2.5), (2.6), (2.7). Then

(i) F̂ 2
n,m = n

n+mF̂n + m
n+mF 2

n,m

(ii) F̂ 1
n,m >p F̂

2
n,m >p Ĝ

2
n,m >p Ĝ

1
n,m

(iii) F 1
n,m >p F

2
n,m >p F̂

2
n,m, and G1

n,m <p G
2
n,m <p Ĝ

2
n,m.

Proof. (i) For x ≥ 0,

F̂ 2
n,m(x) = max{F̂n(x), Ĉn,m(x)} =

n

n+m
F̂n(x) +

m

n+m
max{F̂n(x), Ĝm(x)}

=
n

n+m
F̂n(x) +

m

n+m
F 2
n,m(x).

The result then follows by symmetry.

(ii) First we prove that F̂ 1
n,m >p F̂

2
n,m. Let x ≥ 0, then

F̂ 1
n,m(x) =

1
2
[
max{Fn(x), Cn,m(x)}+ 1−min{Fn((−x)−), Cn,m((−x)−)}

]

≥ 1
2
[
Cn,m(x) + 1− Cn,m((−x)−)

]
= Ĉn,m(x).(2.9)

Using similar arguments it can be shown that F̂ 1
n,m(x) ≥ F̂n(x). Therefore,

combining the last inequality and (2.9) we obtain F̂ 1
n,m(x) ≥ F̂ 2

n,m(x). The result
follows from symmetry.

We now prove that F̂ 2
n,m >p Ĝ

2
n,m. For x ≥ 0, F̂ 2

n,m(x) = max{F̂n(x), Ĉn,m(x)} ≥
Ĉn,m(x) ≥ Ĝ2

n,m(x). The result follows by symmetry.

Since for x ≥ 0, Ĝ1
n,m(x) ≤ Ĉn,m(x) and Ĝ1

n,m(x) ≤ Ĝm(x). Then Ĝ2
n,m >p Ĝ

1
n,m

by symmetry.
Finally consider (iii). The result that F 1

n,m >p F
2
n,m follows from Rojo and Batun-

Cutz (2007). The result that F 2
n,m >p F̂

2
n,m follows from the arguments used to

prove that Bias(F 2
n,m) ≥Bias(F̂ 2

n,m).

Note that (i) implies that for x ≥ 0, Bias(F 2
n,m(x)) = m+n

m Bias(F̂ 2
n,m(x)),

so that |Bias(F 2
n,m(x))| = m+n

m |Bias(F̂ 2
n,m(x))| for all x, thus providing a more

accurate description of the result about bias given in proposition 1.

3. Asymptotics

This section discusses the strong uniform convergence of the estimators and their
asymptotic distribution theory. One important aspect of the asymptotic results for
the estimators F̂ in,m (Ĝin,m), i = 1, 2 discussed here is that they hold even when
only n (m) tends to infinity. This is in sharp contrast with the results of Rojo and
Batun-Cutz (2007) and those of El Barmi and Mukerjee (2008). We discuss the
strong uniform convergence first.
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3.1. Strong Uniform Convergence

The following theorem provides the strong uniform convergence of the estimators
F̂ in,m (Ĝin,m), i = 1, 2. The results use the strong uniform convergence of the sym-
metrized F̂n (Ĝm) to F (G) as n→∞ (m→∞), Schuster (1975).

Theorem 3.1. Let F and G be symmetric distribution functions with F >p G,
and let X1, . . . , Xn and Y1, . . . , Ym be independent random samples from F and G
respectively. Then,

(i) F̂ in,m, for i = 1, 2, converge uniformly with probability one to F as n→∞.
(ii) Ĝin,m for i = 1, 2 converge uniformly with probability one to G as m→∞.

Proof. (i) Consider F̂ 2
n,m first. Then, for x ≥ 0,

F̂ 2
n,m(x)− F (x) = F̂n(x)− F (x) +

m

n+m
max{0, Ĝm(x)− F̂n(x)}.(3.1)

But, since F (x) ≥ G(x),

Ĝm(x)− F̂n(x) ≤ Ĝm(x)−G(x) + F (x)− F̂n(x).

Hence

max{0, Ĝm(x)− F̂n(x)} ≤ max{0, Ĝm(x)−G(x) + F (x)− F̂n(x)}
≤ |Ĝm(x)−G(x)|+ |F̂n(x)− F (x)|(3.2)

and therefore, the left side of (3.1) is bounded above by

|F̂n(x)− F (x)|+ (
m

m+ n
){|Ĝm(x)−G(x)|+ |F̂n(x)− F (x)|.}

Since F̂n, and Ĝm are strongly and uniformly consistent for F and G, then as
n→∞, with probability one,

sup
x≥0
|F̂ 2
n,m(x)− F (x)| → 0,

regardless of whether m→∞ or not. When x < 0 the result follows by symmetry.

Let us now consider the case of F̂ 1
n,m. For x ≥ 0

F̂ 1
n,m(x)− F (x) = F̂n(x)− F (x) +

1
2

m

n+m
[max{0, Gm(x)− Fn(x)}(3.3)

−min{0, Gm(−x−)− Fn(−x−)}
]
.

Since F (x) ≥ G(x) and F (−x) ≤ G(−x), then it follows that

max{0, Gm(x)− Fn(x)} −min{0, Gm(−x−)− Fn(−x−)}
is bounded above by

max{0,Gm(x)−G(x)+F (x)−Fn(x)}−min{0,Gm(−x−)−G(−x)+F (−x)−Fn(−x−)}

and, therefore, the left side of (3.2) is bounded above by
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|F̂n(x)− F (x)| +
1
2

m

m+ n
(|Gm(x)−G(x)|+ |F (x)− Fn(x)|

+ |Gm(−x−)−G(−x)|+ |F (−x)− Fn(−x−)|).(3.4)

Taking the supremum over x in (3.4), and then letting n→∞, the result follows,
whether m → ∞ or not, from the strong uniform convergence of F̂n, Gm, and Fn
to F , G, and F respectively. The result for x < 0 follows by symmetry.

(iii) The proof for the strong uniform convergence of Ĝ2
n,m to G, when only m→∞

is similar. We sketch the proof. For x < 0

Ĝ2
n,m(x)−G(x) = Ĝm(x)−G(x)) +

n

n+m
max{0, F̂n(x)− Ĝm(x)}.

Therefore, since F (x) < G(x) for x < 0, max{0, F̂n(x) − Ĝm(x) is bounded above
by

max{0, F̂n(x)− F (x) +G(x)− Ĝm(x)} ≤ |F̂n(x)− F (x)|+ |G(x)− Ĝm(x)|.

When m → ∞, the result follows, regardless of whether n → ∞ or not, from the
strong uniform convergence of F̂n and Ĝm and using a symmetry argument to
handle the case of x > 0.
(iv) This case is omitted as it follows from similar arguments.

3.2. Weak Convergence

Consider first the point-wise asymptotic distribution for F̂ in,m, i = 1, 2. Recall that

√
n(F̂n(x)− F (x)) W→ N

(
0,
F (−|x|)(2F (|x|)− 1)

2

)
.

Therefore, when n/m→∞, and using (3.1)-(3.4), Slutsky’s theorem and the central
limit theorem for F̂n, we get the following result:

√
n(F̂ inm(x)− F (x)) W→ N

(
0,
F (−|x|)(2F (|x|)− 1)

2

)
.(3.5)

Thus, under these conditions, F̂ in,m, i = 1, 2, are
√
n−equivalent and have the

same asymptotic distribution as the symmetrized F̂n which happens to have the
same asymptotic limit as in the case when G is completely known. Note that this
result assumes only that n/m → ∞ and hence the result holds if m is fixed and
n → ∞. This is in sharp contrast with the results of El Barmi and Mukerjee
(2008) that require that both n and m tend to infinity. Similar results hold for the
estimators Ĝin,m, i = 1, 2. These are summarized in the following theorem.

Theorem 3.2. Suppose that F >p G and let X1, . . . , Xn and Y1, . . . , Ym be random
samples from F and G respectively. Then for i = 1, 2,

(i) If n/m→∞ then

√
n(F̂ inm(x)− F (x)) D→ N

(
0,
F (−|x|)(2F (|x|)− 1)

2

)
.
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(ii) If m/n→∞ then

√
n(Ĝinm(x)−G(x)) D→ N

(
0,
G(−|x|)(2G(|x|)− 1)

2

)
.

We now turn our attention to the weak convergence of the processes
{√

n
(
F̂ inm(x)− F (x)

)
: −∞ < x <∞

}
,

and {√
n
(
Ĝinm(x)−G(x)

)
: −∞ < x <∞

}
,

for i = 1, 2. Only the results for F̂ in,m, i = 1, 2 will be discussed in detail as
the results for Ĝin,m, i = 1, 2 can be obtained by similar arguments. Although the

processes
{√

n
(
F̂ inm(x)− F (x)

)
: −∞ < x <∞

}
for i = 1, 2 are correlated, we are

only interested in their marginal behavior. For that purpose let {W1(x) : −∞ <
x <∞} denote a mean zero Gaussian process with covariance function

E(W1(x)W1(y)) =
{

1
2 (1− F (y))(F (x)− F (−x)) if |y| > |x|

1
2F (x)(F (−y)− F (y)) if |y| < |x|,(3.6)

and let {W2(x) : −∞ < x < ∞} denote a mean zero Gaussian process with
covariance function

E(W2(x)W2(y)) =
{

1
2 (1−G(y))(G(x)−G(−x)) if |y| > |x|

1
2G(x)(G(−y)−G(y)) if |y| < |x|.(3.7)

We have the following result:

Theorem 3.3. Under the conditions of the previous Theorem,

(i) If n/m→∞, then

{√n(F̂ inm(x)− F (x)),−∞ < x <∞} W→ {W1(x) : −∞ < x <∞}, and

(ii) If m/n→∞, then

{√n(Ĝinm(x)−G(x)),−∞ < x <∞} W→ {W2(x) : −∞ < x <∞}.

Proof. The proof follows easily by the continuous mapping Theorem after observing
that the weak limit of {√n(F̂n(x)−F (x))),−∞ < x <∞} is the process {W1(x) :
−∞ < x <∞}, together with the fact that, using (3.1),

F̂ 2
n,m(x)− F (x) = F̂n(x)− F (x) +

m

n+m
max{0, Ĝm(x)− F̂n(x)},(3.8)

with ‖ √n m
n+m{max 0, Ĝm − F̂n} ‖∞→ 0 with probability one, where ‖ · ‖∞ de-

notes the sup norm. Similar arguments yield the results for the other processes.

The asymptotic theory for F̂ 2
n,m was discussed by El Barmi et al (2008) for the

case that both n and m go to infinity and hence their result does not include our
result here when m is bounded and n → ∞. When n/m → c with 0 ≤ c < ∞,
and F (x) > G(x) for all x > 0 the weak limit of {√n(F̂ inm(x) − F (x)),−∞ <
x < ∞} is {W1(x) : −∞ < x < ∞}, for i = 1, 2, which is the weak limit of the
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process {√n(Fn,2(x) − F (x)),−∞ < x < ∞} discussed in Rojo and Batun-Cutz
(2007). Let {Z(x),−∞ < x <∞} represent the weak limit of the empirical process
{√n(Fn(x)− F (x)),−∞ < x <∞}. That is {Z(x),−∞ < x <∞} is a mean zero
Gaussian process with covariance function E(Z(t)Z(s)) = F (s)(1−F (t)) for s ≤ t.
When n/m → c with 0 ≤ c < ∞, and F (x) = G(x) for all x the weak limits of
{√n(F̂ inm(x) − F (x)),−∞ < x < ∞} for i = 1, 2 follow from the results in Rojo
(2004) as follows:

Theorem 3.4. Let F (x) = G(x) for all x and let n/m → c for 0 ≤ c < ∞.
Let {Wi(x),−∞ < x < ∞}, for i = 1, 2 be the mean zero Gaussian processes
with covariance functions given by (3.6) and (3.7), respectively. Let W ∗i (x) =
Wi(|x|)sgn(x), for i = 1, 2. Then

(i) The process
√
n(F̂ 2

n,m−F (x)),−∞ < x <∞} converges weakly to the process

{max(W ∗1 (x),
√
cW∗

2 (x)+cW∗
1 (x)

1+c ),−∞ < x < ∞} with W ∗1
D= W ∗2 and indepen-

dent.

(ii) The process
√
n(F̂ 1

n,m−F (x)),−∞ < x <∞} converges weakly to the process
{H(|x|)sgn(x),−∞ < x < ∞]} where H(x) = 1

2{max{Z1(x), c
1+cZ1(x) +

√
c

1+cZ2(x)}−min{Z1(−x), c
1+cZ1(−x) +

√
c

1+cZ2(−x)}, and {Zi(x),−∞ < x <
∞}, i = 1, 2 are independent copies of the process {Z(x),−∞ < x <∞}.

Proof. (i) Consider F̂ 2
n,m first. When F (x) = G(x) for all x, it follows from (3.8)

that, for x ≥ 0,

√
n(F̂ 2

n,m(x)− F (x)) = max{√n(F̂n(x)− F (x)),
√
n/m

m

n+m

√
m(Ĝm(x)−G(x))

+
n

n+m

√
n(F (x)− F̂n(x))}.(3.9)

By the independence of F̂n and Ĝm and their weak convergence to W1 and W2, it
follows that the bivariate process

{
√
n/m

m

n+m

√
m(Ĝm(x)−G(x)),

n

n+m

√
n(F (x)− F̂n(x)),−∞ < x <∞}

converges weakly to the process {
√
c

1+cW2(x), c
1+cW1(x),−∞ < x < ∞}. Since

for x < 0, F̂ 2
n,m(x) − F (x) D= F (−x) − F̂ 2

n,m(−x), the result then follows for
0 < c <∞ from the continuous mapping theorem after observing that the mapping
h(x, y) = (1+c

c y, x+y) is continuous, and then applying it to (3.9) to get the result.
The case of c = 0 follows immediately since it then follows that the second term on
the right side of (3.9) converges to zero in probability.

(ii) Note that for x > 0

F̂ 1
nm(x)− F (x) =

1
2

max {Fn(x)− F (x),
n

m+ n
(Fn(x)− F (x)) +

m

n+m
(Gm(x)− F (x))}

+
1
2

min {Fn(−x)− F (−x),
n

m+ n
(Fn(−x)− F (−x)) +

m

n+m
(Gm(−x)− F (−x))}.

imsart-coll ver. 2008/08/29 file: Rojo_Batun.tex date: March 25, 2009



Estimation of Symmetric Distributions under Peakedness 161

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Since the function h(x, y, z, w) = 1
2 [max{x, x+ z} −min{y, y + w}] is continuous,

by the continuous mapping theorem we obtain

√
n(F̂ 1

nm(x)− F (x)) W→ 1
2

[
max{Z1(x),

c

1 + c
Z1(x) +

√
c

1 + c
Z2(x)}

−min{Z1(−x),
c

1 + c
Z1(x) +

√
c

1 + c
Z2(−x)}

]
= H(x).(3.10)

The result then follows after considering the case x < 0 and following a similar
argument.

It has been observed, e.g. Rojo (1995a), Rojo (2004), and Rojo and Batun-Cutz
(2007), that weak convergence of the processes of interest fails to hold when the
underlying distributions F and G coincide at some point x0 and are unequal in
some neighborhood to the right of x0. That is the case here as well. Suppose that
F (x0) = G(x0) for x0 > 0 and F (x) > G(x) for x ∈ (x0, x0 + ν), ν > 0. If m

n → c,
0 < c ≤ ∞, as m,n→∞, it follows that

(3.11)
√
n(F̂ 1

nm(x0)− F (x0)) D→ H(|x0|)sgn(x0),

with H(x) defined as in (ii) of theorem 3.4 with (Z1(x0), Z2(x0)) a zero-mean
bivariate normal distribution vector with covariance (1− F (x0))F (x0).

However, for x ∈ (x0, x0 + ν) the sequence
√
n(F̂ 1

nm(x) − F (x)) converges in
distribution to the distribution given in (3.5). Then it can be seen, using arguments
as in Rojo (1995a), that the process {√n(F̂ 1

nm(x) − F (x)) : −∞ < x < ∞} is not
tight and hence cannot converge weakly.

We finish this section with results that provide the weak convergence of the
processes {√n(F in,m(x) − F (x)),−∞ < x < ∞} for i = 1, 2, in the case that
F (x) = G(x) for all x.

Theorem 3.5. Let n/m→ c with 0 ≤ c <∞, and F (x) = G(x) for all x.

(i) The process {√n(F 2
n,m(x)− F (x)),−∞ < x <∞} converges weakly to

{sgn(x) max{sgn(x)W1(x), sgn(x)
√
cW2(x),−∞ < x <∞},

where W1 and W2 are independent copies of the mean zero Gaussian process
with covariance function defined by (3.6).

(ii) The process {√n(F 1
n,m(x)− F (x)),−∞ < x <∞} converges weakly to

1
2
{max{Z(xsgn(x)),

√
cW (xsgn(x)}

−sgn(x) min{Z(−xsgn(x)),
√
cW (−xsgn(x))};−∞ < x <∞},

where Z and W are independent mean zero Gaussian process with covariance
functions defined by E(Z(s)Z(t)) = F (s)(1 − F (t)) for s < t, and (3.6)
respectively.

Proof. (i) The result follows from the independence of {√n(F̂ ∗n(x)− F (x)),−∞ <

x < ∞} and {√m(Ĝ∗m(x) − G(x)),−∞ < x < ∞}, their weak convergence to W1

and W2, and the continuous mapping theorem after observing that
√
n(F 2

n,m(x)− F (x)) = sgn(x) max{sgn(x)
√
n(F̂ ∗n(x)− F (x)),

sgn(x)(
√
n

m

√
m(Ĝ∗m(x)−G(x))}.
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(ii) Consider the case of x > 0 and write

√
n(F 1

n,m(x)−F (x)) =
√
n

2
{1−2F (x)+max(Fn(x), Ĝm(x))−min(Fn(−x), Ĝm(−x))}

=
1
2
{max{√n(Fn(x)− F (x)),

√
n

m

√
m(Ĝm(x)−G(x))}

−min{√n(Fn(−x)− F (−x)),
√
n

m

√
m(Ĝm(−x)−G(−x))}}.

For x < 0, a similar argument leads to

√
n(F 1

n,m(x)−F (x)) =
1
2
{min{√n(Fn(x)− F (x)),

√
n

m

√
m(Ĝm(x)−G(x))}

−max{√n(Fn(−x)− F (−x)),
√
n

m

√
m(Ĝm(−x)−G(−x))}},

The result then follows by the continuous mapping theorem after letting n/m→ c

with
√
n(Fn(x)−F (x)) and

√
m(Ĝm(x)−G(x)) independent and converging weakly

to Z and W respectively.

4. Example with Sib-pair Data: An Illustration

In this section the estimator F̂ 2
n,m is illustrated by using the sib-paired data for

the Caucasian population in the Dallas metroplex area. As can be observed from
Figure 2, the new estimated distribution functions now satisfy both the constraint
of symmetry and the constraint of peakedness. Thus, since siblings with two alleles
identical by descent are more similar than those siblings sharing only one allele
identical by descent, the distribution function denoted by IBD2 is more peaked
about zero than the other two distribution functions. Similar comments apply to
the other comparisons.

5. Simulation Work

Monte Carlo simulations were performed to study the finite-sample properties of
the estimators F̂ 1

nm and F̂ 2
nm defined by (2.4) and (2.6) respectively. We consider

various examples of underlying distributions (Normal, Cauchy, Laplace, mixtures
of normals, and T), and sample sizes (n = 10, 20, 30 for F and m = 10, 20, 30 for
G). Each simulation consisted of 10,000 replications.

Figures 3 and 4 show the bias functions for the four estimators considered here.
Figure 3 considers F ∼ Cauchy(0, 1) and G ∼ Cauchy(0, 2), and Figure 4 considers
the case with F ∼ Laplace(0, 1) and G ∼ Laplace(0, 1.5). As shown in Proposition
1, the estimator F̂ 2

n,m has uniformly the smallest absolute bias. These Figures are
representative of the results that we obtained. One result that holds in all of our
simulations is that |Bias(F 1

n,m(x))| ≥ |Bias(F̂ 1
n,m(x))| for all x. Unfortunately, we

are unable to prove this conjecture.
Turning our attention to comparing the estimators in terms of the Mean Squared

Error (MSE) Figures 5 - 10 show the ratio of the MSE of the empirical distribu-
tion to the MSE of each of the four estimators considered here. These plots are
representative of all the examples considered. As it can be seen from the plots, the
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Fig 2. Order restricted estimators for the sib-pair data incorporating peakedness.

empirical distribution function is dominated by the estimators in every case and
for all x. Whereas the estimators F̂ in,m behave better than the estimators F in,m,
i = 1, 2 in a neighborhood of zero, the roles are reversed on the tails of the under-
lying distribution. What is observed is that the region of the support of F where
F̂ in,m dominate F in,m, i = 1, 2 shrinks as the tails of the distributions get heavier,
and when the distribution G is far from F . Thus, there is no clear choice among
the four estimators, unless the tail is of special interest, in which case the estimator
F 2
n,m seems to be the clear choice.

6. Conclusions

Estimators were proposed for the distribution functions F and G when it is known
that F >p G, and F and G are symmetric about zero. The estimator for F (G) was
seen to be strongly uniformly consistent when only n (m) goes to infinity and the
asymptotic theory of the estimators was delineated without requiring that both n
and m go to infinity. Finite sample properties of the estimators were considered and
it was shown that the estimator F̂ 2

n,m has the uniformly smaller absolute bias of
the four estimators considered here. The choice of which estimator is best in terms
of mean squared error (mse), however, is not clear. Although the estimators F̂ in,m
for i = 1, 2 have smaller mse than the estimators F in,m, i = 1, 2 in a neighborhood
of zero, the tails are problematic for F̂ in,m and the estimators F in,m tend to have
smaller mse as demonstrated by the simulation study.
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Fig 3. Bias of the estimators when estimating F∼Cauchy(0,1) with G∼Cauchy(0,2)
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Fig 4. Bias of the estimators when estimating F∼Laplace(0,1) with G∼Laplace(0,2).
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Fig 5. Mean Squared Error of the estimators when estimating F∼Normal(0,1) with
G∼Normal(0,1.1).

imsart-coll ver. 2008/08/29 file: Rojo_Batun.tex date: March 25, 2009



Estimation of Symmetric Distributions under Peakedness 167

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

F(x)

M
S

E
 r

a
ti
o

n=10, m=10

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
n=10, m=20

F(x)

M
S

E
 r

a
ti
o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
 n=10, m=30

F(x)

M
S

E
 r

a
ti
o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
 n=20, m=10

F(x)

M
S

E
 r

a
ti
o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
 n=20, m=20

F(x)

M
S

E
 r

a
ti
o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
 n=20, m=30

F(x)

M
S

E
 r

a
ti
o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
 n=30, m=10

F(x)

M
S

E
 r

a
ti
o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
n=30, m=20

F(x)

M
S

E
 r

a
ti
o

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5
n=30, m=30

F(x)

M
S

E
 r

a
ti
o

(2.1)

(2.2)

(2.6)

(2.4)

Fig 6. Mean Squared Error of the estimators when estimating F∼Normal(0,1) with
G∼Normal(0,2).
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Fig 7. Mean Squared Error of the estimators when estimating F∼Cauchy(0,1) with
G∼Cauchy(0,1.5).
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Fig 8. Mean Squared Error of the estimators when estimating F∼Cauchy(0,1) with
G∼Cauchy(0,2).
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Fig 9. Mean Squared Error of the estimators when estimating F∼Laplace(0,1) with
G∼Laplace(0,1.5).
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Fig 10. Mean Squared Error of the estimators when estimating F∼Laplace(0,1) with
G∼Laplace(0,2).
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drecht, Riedel, 33–40.

[6] Birnbaum, Z. W. (1948). On random variables with comparable peakedness. Ann. Math. Statist.,

19, 6–81.

[7] Brown, G. and Tukey, J. W. (1946). Some distributions of sample means. Ann. Math. Statist.,

7, 1–12.

[8] Doksum, K. A. (1969). Starshaped transformations and the power of rank tests. The Annals of

Mathematical Statistics, 40, 1167–1176.

[9] El Barmi, H. and Rojo, J. (1997). Likelihood ratio test for peakedness in multinomial populations.

J. Nonparam. Statist., 7, 221–237.

[10] El Barmi, H. and Mukerjee, H. (2008). Peakedness and peakedness ordering in symmetric distri-

butions. Journal of Multivariate Analysis, doi:10.1016/j.jmva2008.06.011 (In Press)

[11] Elston, R. C., Boxbaum, S. and Olson, M. (2000). Haseman and Elston Revisited. Genetic Epi-

dem., 19, 1–17.

[12] Embury, S. H., Elias, L., Heller, P. H., Hood, C. E., Greenberg, P. L. and Schrier, S. L. (1977).

Remission maintenance therapy in acute myelogenous lukemia. Western Journal of Medicine,

126, 267–272.

[13] Fraser, D. A. S. (1957). Nonparametric Methods in Statistics. Wiley, New York.

[14] Haseman, J. K. and Elston, R. C. (1972). The investigation of linkage between a quantitative trait

and a marker locus. Behav. Genet., 2, 2–19.

[15] Karlin, S. (1968). Total Positivity. Stanford University Press, CA.

[16] Lehmann, E. L. (1955). Ordered families of distributions. Ann Statist., 26, 399–419.

[17] Lehmann, E. L. (1959). Testing Statistical Hypotheses. Wiley, New York.

[18] Lehmann, E. L. (1988). Comparing location experiments. Ann. Statist., 16, 521–533.

[19] Lehmann, E. L. and Rojo, J. (1992). Invariant directional orderings. Ann Statist., 20, 2100–2110.

[20] Liu, B. H. (1988). Statistical Genomics, Linkage, Mappings, and QTL Analyisis. CRC Press,

New York.

[21] Lo, S. H. (1987). Estimation of distribution functions under order restrictions. Statistics and

Decisions, 5, 251–262.

[22] Marshall, A. W. and Olkin, I. (2007). Life Distributions: Structure of Nonparametric, Semi-

parametric, and Parametric Families. Springer Science+Bussines Media, LCC, New York.

[23] Oh, M. (2004). Inference for peakedness ordering between two distributions. J. Kor. Statist. Soc.,

33, 303–312.

[24] Oja, H. (1981). On location, scale, skewness, and kurtosis of univariate distributions. Scand. J.

Statist., 8, 154–168.

[25] Proschan, F. (1965). Peakedness of distributions of convex combinations. Ann. Math. Statist.,

36, 1703–1706.

[26] Rojo, J. and He, G. Z. (1991). New properties and characterizations of the dispersive ordering.

Statist. & Prob. Lett., 11, 365–372.

[27] Rojo, J. and Wang, J. (1994). Test based on L-statistics to test the equality in dispersion of two

probability distributions. Statistics and Probability Letters. 21, 107–113.

[28] Rojo, J. (1995a). On the weak convergence of certain estimators of stochastically ordered survival

functions. J. Nonparam. Statist., 4, 349–363.

imsart-coll ver. 2008/08/29 file: Rojo_Batun.tex date: March 25, 2009



Estimation of Symmetric Distributions under Peakedness 173

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

[29] Rojo, J. (1995b). Nonparametric quantile estimation under order constraints, J. Nonparam.

Statist., 5, 185-200.

[30] Rojo, J. and Ma, Z. (1996). On the estimation of stochastically ordered survival functions. J.

Statist. Compu. and Simu., 55, 1–21.

[31] Rojo, J. (1998). Estimation of the quantile function of an IFRA distribution. Scand. J. Statist.,

25.2, 293–310.

[32] Rojo, J. (1999). On the estimation of a survival function under a dispersive order constraint. J.

Nonparam. Statist., 11, 107–135.

[33] Rojo, J. (2004) On the estimation of survival functions under a stochastic order constraint. The

First Erich L. Lehmann Symposium - Optimality, (J. Rojo, ed), IMS LNMS Vol 44, 37–61.

[34] Rojo, J. and Batun-Cutz, J. (2007). Estimation of symmetric distributions subjects to peakedness

order. Series in Biostatistics Vol 3, Advances in Statistical Modeling and Inference Chapter 13,

649–670.

[35] Rojo, J., Batun-Cutz, J. and Durazo, R. (2007). Inference under peakedness restrictions. Statistica

Sinica 17.3, 1165–1189.

[36] Schuster, E. (1975). Estimating the distribution function of a symmetric distribution. Biometrika,

62, 3, 631–635.

[37] Schweder, T. (1982). On the dispersion of mixtures. Scand. J. Statist., 9, 165–169.

[38] Shaked, M. (1980). On mixtures from exponential families. J. R. Statist. Soc. B., 42, 192–198.

[39] Shaked, M. (1982). Dispersive orderings of distributions. J. Appl. Prob., 19, 310–320.

[40] Shaked, M. and Shantikumar, J. G. (2007) Stochastic Orders. Springer Science+Bussines Media,

LCC, New York.

[41] Shibata, T. and Takeyama, T. (1977). Stochastic theory of pitting corrosion. Corrosion, 33.7, 243.

imsart-coll ver. 2008/08/29 file: Rojo_Batun.tex date: March 25, 2009



IMS Collections
Vol. 0 (2009) 174–190
c© Institute of Mathematical Statistics, 2009

arXiv: math.PR/0000005
1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

A Functional Generalized Linear Model

with Curve Selection in Cervical

Pre-cancer Diagnosis using Fluorescence

Spectroscopy
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Rice University

Abstract: A functional generalized linear model is applied to spectroscopic
data to discriminate disease from non-disease in the diagnosis of cervical pre-
cancer. For each observation, multiple functional covariates are available, and
it is of interest to select a few of them for efficient classification. In addition
to multiple functional covariates, some non-functional covariates are also used
to account for systematic differences caused by these covariates. Functional
principal components are used to reduce the model to multivariate logistic
regression and a grouped Lasso penalty is applied to the reduced model to
select useful functional covariates among multiple curves.
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1. Introduction

Classification with functional data is a challenging problem due to the high dimen-
sionality of the observation space. One solution is to reduce the dimension and use
the reduced features for classification, such as the work of Hall et al. [6], Zhao et
al. [19] and Ferré and Villa [5]). Another way is to use generalized linear regression
by treating the class labels as responses and functional observations as predictors,
which was proposed by James [8] and Müller and Stadtmüller [11]. Ratcliffe et al.
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Fig 1. Left Panel: Fluorescence spectral curves at different excitation wavelengths. Right Panel:
The image plot of fluorescence spectroscopy data (EEM).

[14] and Leng and Müller [9] applied this type of modeling to medical and gene ex-
pression data, respectively. Our basic concern in this study is the case when there
are multiple functions per observation in a classification problem, and we wish to
perform a curve selection to select few important curves and perform classification
based on the selected curves.

The example that motivated our work is fluorescence spectroscopy data being
investigated for cervical pre-cancer diagnosis. Fluorescence spectroscopy is an op-
tical technique proposed for cervical pre-cancer screening. As a non-invasive, low-
cost diagnosis tool, it provides a promising alternative to the existing methods for
early-stage cancer diagnosis. One important step in this type of diagnosis is to
discriminate the diseased observations from normal based on the high dimensional
functional data — the fluorescence spectral measurements. In many clinical stud-
ies, several different spectra can be produced and used simultaneously for diagnosis
([12]), which makes the classification difficult since introducing more spectra not
only provides more information but also more noise. Among these multiple spec-
tral curves, it is suspected that some spectral curves contain more disease related
information and hence are more “important” than others (see [3]). Furthermore, in
order to produce an inexpensive commercial device, we would like to measure as
few spectra as is necessary. This makes it beneficial to use statistical analysis to find
out those curves that are good enough for diagnosis and remove the unnecessary
ones, which can improve the diagnostic accuracy and reduce the cost.

The data studied in this paper are from a clinical study in which multiple fluores-
cence spectra were measured at the same sites where biopsies were taken for patho-
logical diagnosis. Each observation consists of several spectral curves measured in
the following way: an excitation light at a certain fixed excitation wavelength is
produced to illuminate the cervical tissue. The excitation light is absorbed by var-
ious endogenous fluorescent molecules in tissue, resulting in emission of fluorescent
light. The emitted fluorescent light is measured by an optical detector and the
spectrum is obtained as one smooth curve. The excitation light is varied at several
different wavelengths and gives multiple spectral curves for each measurement. The
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left panel of Figure 1 shows the plot of all spectral curves from one measurement.
Each measurement contains 16 spectral curves measured at excitation wavelengths
ranging from 330 nm to 480 nm with increments of 10 nm. Each spectral curve con-
tains fluorescence intensities recorded on a range of emission wavelengths between
385nm and 700nm. If we use a color plot to represent the intensities, we can stack
all the 16 spectra and obtain an image as shown in the right panel of Figure 1.
We call such fluorescence spectroscopy measurements excitation-emission matrices
(EEMs).

This study aims to select a subset of spectral curves from the 16 available curves
for the purpose of classification. We will look at the problem from the functional
data analysis ([13]) point of view and propose a functional generalized linear model,
which will select among multiple functional predictors and perform binary classifi-
cation. The proposed model allows both functional predictors and non-functional
predictors. The non-functional predictors are variables associated with the mea-
surements which may cause systematic difference in spectra, such as tissue type of
the measurement site, or the menopausal status of patients.

The structure of this paper is as follows: Section 2 introduces the functional
generalized linear model with curve selection and Section 3 provides a simulation
study. The real data application to the fluorescence spectroscopy data is presented
in Section 4, and details on determining related parameters are discussed in Section
5. A more general discussion is given in Section 6.

2. Functional Generalized Linear Model with Curve Selection

Consider n i.i.d. observations where each observation contains J functions. For
i = 1, . . . , n and j = 1, . . . , J , let xij(t) denote the jth function observed from the
ith observation, where E[xij(t)] = µj(t). Note that the J functions within each
observation can be rather arbitrary hence we assume different mean function µj(t)
for each xij(t). In addition to functional data, we assume there is a non-functional
vector zi associated with each observation. Suppose the responses we observed are
binary variables yi. Similarly to James [8] and Müller and Stadtmüller [11], we
propose a functional generalized linear model to connect the binary responses with
the predictors. Let pi = Pr (yi = 1|zi, xij(t), j = 1, . . . , J) and

pi = g−1(ηi)(2.1)

ηi = α0 + zTi α+
J∑

j=1

∫

Tj

βj(t)(xij(t)− µj(t))dt(2.2)

where Tj is the domain of xij(t), α0 is the univariate intercept, α is a vector of coeffi-
cients for the non-functional predictors, and the βj(t)’s are the functional regression
coefficients. For convenience, we center xij(t) at its mean in the integrand. Here the
link function g(·) is a one-to-one continuous function. To perform curve selection,
we propose the following constraint on the functional regression coefficients:

(2.3)
J∑

j=1

||βj ||L2 < s

where ||f ||L2 = (
∫
f2(t)dt)1/2, s is a pre-defined constant. Note that (2.3) is a

combined constraint of L2 norm and l1 norm. This is an extension of the group-
wise variable selection in the multivariate setting proposed by Yuan and Li [18].
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Because of the properties of this combined constraint, we expect βj ≡ 0 for a
number of j’s, depending on the value of s.

Due to the infinite dimensionality of functional data, multivariate methods can
not be used directly for solving the above proposed model. One can discretize xij(t)
on a finite grid and transform the problem to a multivariate regression model, but
the number of grid points is an issue and there will be high correlation between
contiguous grid points because of the “functional” properties of xij(t). A natural
choice is to apply standard functional dimension reduction methods to reduce the
dimension first and solve the problem on the reduced space. If we assume ∀j, xij(t) ∈
Hj for some separable Hilbert space Hj , and E[xij(t)] = µj(t), we can expand
xij(t)− µj(t) on a set of orthonormal basis {φjk}∞k=1

(2.4) xij(t)− µj(t) =
∞∑

k=1

cijkφ
j
k(t)

and a truncated version of (2.4) can be used to approximate xij(t) since
∑∞
k=1 |cijk|2

<∞. And similarly, we assume βj(t) ∈ Hj ,∀j, and this gives

(2.5) βj(t) =
∞∑

k=1

bjkφ
j
k(t)

Note that the orthonormal basis {φjk}∞k=1 can be chosen to be a known basis such as
a Fourier basis or a wavelet basis. If in addition, we assume xij(t) ∈ L2[Ω×Tj ] for the
domain Tj and the underlying sample space Ω, i.e.,

∫
Tj
E[xij(t)2] <∞,∀j, Mercer’s

theorem and Karhunen-Loève theorem ([2]) suggest taking the orthonormal basis
to be the eigenfunctions of the covariance operator K, where K is defined by

(2.6) Kx(t) =
∫
x(s)k(s, t)ds, k(s, t) = Cov(x(s), x(t)).

In this case, the coefficients {cijk, k = 1, . . . ,∞} are called functional principal
component scores of the functional data. Using the functional principal component
method is different from using a known basis in that the eigenbasis functions need to
be estimated. Various estimating methods are proposed as in Ramsay and Silverman
[13], and in Hall, Müller and Wang [7].

Once the functional principal component scores or the orthonormal basis coeffi-
cients have been estimated, we can reduce equation (2.2) to

(2.7) ηi = α0 + zTi α+
J∑

j=1

δj∑

k=1

cijkbjk

where δj is the truncation parameter for the jth functional predictor. We thus
transfer the functional regression to multivariate regression. The constraint condi-
tion (2.3) will be reduced to

(2.8)
J∑

j=1

||bj ||2 < t

where bj = (bj1, . . . , bjδj ) and || · ||2 stands for the Euclidean norm. Curve selec-
tion can thus be performed through selecting variables in (2.7) using the grouped
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Lasso type constraint (2.8), i.e., if one curve xj(t) is selected, then the coefficients
bjk, k = 1, . . . , δj , will all be non-zero. The Lasso (Least Absolute Shrinkage and Se-
lection Operator) was first proposed by Tibshirani [16] for model selection in linear
regression models. The basic idea was to find a subset of the covariates with non-
zero coefficients by applying an l1 constraint to the regression coefficients based on
the ordinary least square estimation. Yuan and Lin [18] extended the regular Lasso
to cases where the covariates can be grouped, such as multi-factor ANOVA. They
combine the l1 and l2 constraints so that the resulting model selects variables at the
group level and is invariant under group-wise orthogonal transformation. To solve
our problem based on the reduced model (2.7) and (2.8), we borrow the algorithm
proposed by Meier et al. [10], where they extend the group-wise lasso regression of
Yuan and Lin [18] to a logistic regression setup. Assume the link function in (2.1)
is a logit link, i.e.,

(2.9) log(
pi

1− pi
) = ηi

The estimate can be obtained by minimizing the convex function

(2.10) Qλ(θ) = −l(θ) + λ

J∑

j=1

s(δj)||bj ||2

where θ = {α0, α, bj , j = 1, . . . , J}, and l(·) is the log-likelihood function:

(2.11) l(θ) =
n∑

i=1

{yiηi − log(1 + exp(ηi))}

Here s(δj) is used to rescale the penalty with respect to the dimensionality of
bj , usually taken to be

√
δj , and λ > 0 is the tuning parameter to control the

amount of penalty. Note that in the model of Meier et al. [10], they only allow
one unpenalized term, i.e., only the intercept term is unpenalized. In our proposed
model, in addition to the intercept α0, we allow the coefficients α of nonfunctional
predictors to be unpenalized. Meier et al. stated the attainability of the minimum
of the optimization problem in their paper and provided a proof. Actually, some
conditions must be satisfied for the attainability to hold. Here we provide a general
sufficient condition for the minimum of Equation (2.10) to be attained.

Proposition 1. For 0 <
∑n
i=1 yi < n, λ > 0, s(δj) > 0,∀j, assume the design

matrix X formed by

X =




1 zT1 c111 . . . c11δ1 . . . . . . c1J1 . . . c1JδJ

...
1 zTn cn11 . . . cn1δ1 . . . . . . cnJ1 . . . cnJδJ




is an n by m matrix of rank m, n ≥ m. Assume the maximum likelihood estimator
for the logistic regression (with log-likelihood in Equation (2.11)) exists. Then the
Equation (2.10) has an unique minimizer θ∗.

The proof for Proposition 1 is in the Appendix. Meier et al. [10] proposed a Block
Coordinate Gradient Descent algorithm to solve the group lasso logistic regression
and provided an R package called grplasso. We will use this package to perform
curve selection based on reduced model in equations (2.7) and (2.8). The initiation
of the algorithm is the same as in grplasso.
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3. Simulation Study

To verify the performance of the proposed method in classification problems with
multiple functional covariates, we generate n = 1000 i.i.d. observations. Each obser-
vation contains one non-functional covariate and three functional covariates. The
non-functional covariate is generated from uniform (0, 1) distribution. And the three
functional covariates are generated using the first 4 cosine basis functions on the
domain [0, 1], i.e., using basis φ0(t) = 1, φk(t) =

√
2 cos(kπt), k = 1, . . . , 3. For

each functional covariate, the 4 coefficients of the cosine basis are generated in-
dependently from a normal distribution with some fixed mean and variance 0.5.
We set the coefficient functions for the first and third functional covariates to be
zero and set the coefficient function for the second to be non-zero. Figure 2 shows
the plot of both non-functional covariates and functional covariates for the first 50
observations. The binary responses yi are generated by sampling from a Bernoulli
distribution with success probability pi = (1 + exp(−ηi))−1, where ηi is computed
from equation (2.2) using numerical integration. The proportion of 1’s among the
binary yi’s is 57.3%. The data are randomly split into a training set and a test set
with 800 observations in the training set and 200 observations in the test set.

To apply the proposed model to these data, one can choose different types of
orthonormal basis for dimension reduction. Since the data are generated using co-
sine basis, we will show the results of using the cosine basis so that the estimated
coefficients can be compared with their known true values. We have also tried using
functional principal components, and the curve selection and prediction results are
very similar to that of using cosine basis.

For the choice of cosine basis, we reduce the dimension of the functional pre-
dictors using the first 4 cosine basis functions. The group-wise lasso regression
algorithm of Meier et al. [10] is then applied to the reduced scores. Figure 3 shows
the estimation paths for the regression coefficients as a function of λ. Note that
for the estimated coefficient function β̂j , we plotted their L2 norm, i.e., ||β̂j || =√∫

Tj
β̂j(t)2dt, where the function β̂j are obtained through inverse transform of the

estimated coefficients b̂j . From Figure 3, we see that for a large range of λ, i.e.,
15.7 < λ < 115, the method correctly picked out the non-zero coefficient function
β̂2. The values of β̂2(t) at 6 selected λ’s is plotted in Figure 4 in comparison with
the true β2(t). Table 1 shows the estimated coefficients(in form of the cosine basis
scores b̂j) compared with the true values under the 6 selected λ’s. From Table 1,
we see that as the penalty parameter λ increases, the magnitudes of the estimated
coefficients shrink toward 0. When λ = 0, the estimates are equal to the maxi-
mum likelihood estimates, which gives nonzero estimates to all coefficients. When
λ ranges from 22.4 to 89.6, the coefficients corresponding to the first and third curve
are exactly 0, and the coefficients corresponding to the second curve are nonzero.
For λ > 14.1, the estimates are (almost all) closer to 0 than the true values. We
believe that these shrinkage effects are caused by the continuous-shrinkage property
of Ridge and Lasso penalty (see Tibshirani [16]). It has been suggested that there
may be large bias in the estimators related to the inconsistency of the original Lasso
under certain conditions, i.e., that the Lasso does not satisfy the “oracle proper-
ties” (Fan and Li [4], Zhao and Yu [20]). Some modifications have been proposed
to overcome the drawbacks of Lasso and make the estimators satisfy the oracle
properties(see Zou [22]). In this study, we only focus on the curve selection and
prediction, but more research can be done on the consistency of the grouped-Lasso
regression under the functional data setup.
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Fig 2. Data plot of both non-functional covariates and functional covariates for the first 50
observations used in simulation.

To perform prediction on test set, the estimated coefficient function β̂j(t), j =
1, 2, 3 are plugged into the test set using (2.2) and the estimated success probability
p̂i are computed for each observation, from which we can plot a ROC curve(see
Zweig & Campbell [23]) for each λ. From each ROC curve, we pick a point that
maximizes the sum of sensitivity and specificity, and this point will be used as the
optimal classification point. The misclassification rate at the optimal point and the
corresponding area under the ROC curves are computed at different values of λ
and plotted in Figure 5. From Figure 5, we find that when λ is around 22.4, the
prediction on the test set gives the best sensitivity(93%) and specificity(73%) and
an fairly large area under ROC curve (0.88), and the corresponding misclassification
rate is 16%.

imsart-coll ver. 2008/08/29 file: Hongxiao.tex date: March 25, 2009



Functional Generalized Linear Model 181

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0 20 40 60 80 100 120

0
1

2
3

4

Coefficient Estimates v.s. λ

λ

E
st

im
at

ed
 C

oe
ffi

ci
en

ts
 o

r 
T

he
ir 

N
or

m
s α̂0

α̂
||β̂1||
||β̂2||
||β̂3||

Fig 3. Estimated paths of coefficient vector at different λ values

4. Real Data Application–Fluorescence Spectral Curve Selection and
Cervical Pre-Cancer Diagnosis

Totally 717 EEM measurements were made on 306 patients, and each measurement
contains 16 spectral curves. Measurements were taken from different sites on the
cervix and may include repeated measurements at the same site. All the measure-
ments were made using the same instrument (called FastEEM3) in the same clinic
(British Columbia Cancer Agency, Vancouver, CA). Data were split into a training
set and a test set with 396 measurements in the training set and 321 in the test set.
The proportions of diseased cases within each set are 0.21, 0.20, respectively. Two
non-functional covariates are considered in this study: the colposcopic tissue type of
the measurements, and the menopausal status. Colposcopic tissue type is a binary
variable indicating two types of tissue — squamous and columnar, which is obtained
prior the fluorescence spectroscopy measurements. Menopausal status of a patient
is a categorical variable which has three levels: pre-, peri- and post-menopause. The
first 5 functional principal components are chosen as the scores extracted from each
functional predictor, which reduce the data to a total of 80 scores. To reduce bias,
the test set scores (the scores of orthonormal basis) are computed based on only
information obtained from the training set. For example, the eigenfunctions used
for computing functional principal components scores of the test set are estimated
from the training set.

The grouped lasso logistic regression is used to pick the excitation wavelengths
as λ decreases from 6 to 0. Due to the large number of curves, the plot of coefficient
path is hard to visualize. In Figure 6, we summarize the excitation spectral curves
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Fig 5. Prediction results at different λ values.

selected at different λ values. For example, from Figure 6 we find that when 3.73 <
λ ≤ 5.08, the curves at excitations 340,410,420,460 are selected. At larger values of
λ, the penalty is heavier, and fewer curves are selected. When λ = 0, there is no
penalty, and all curves are selected. The order of selection from larger λ values to
smaller λ values suggests the importance of curves in the regression. For example,
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Table 1
The estimated coefficient values compared with the true values at different λs

Estimated coefficients at different λ values
Coef True Values λ=118 λ=89.6 λ=22.4 λ=14.1 λ=5.3 λ=0
α0 0.5 0.3 0.3 0.39 0.42 0.46 0.5
α 1 0.63 0.64 0.82 0.87 0.97 1.06
b11 0 0 0 0 0 0.03 0.15
b12 0 0 0 0 0 -0.04 -0.17
b13 0 0 0 0 0 0.04 0.18
b14 0 0 0 0 0 0 -0.01
b21 1 0 0.13 0.58 0.67 0.79 0.9
b22 2 0 0.31 1.43 1.67 2.01 2.29
b23 -3 0 -0.42 -1.92 -2.24 -2.66 -3.02
b24 -1 0 -0.18 -0.84 -0.99 -1.21 -1.41
b31 0 0 0 0 0 0.02 0.03
b32 0 0 0 0 0.01 0.07 0.13
b33 0 0 0 0 0.04 0.34 0.56
b34 0 0 0 0 0.01 0.09 0.14

the excitation curves are ordered by 340 > 460 > 420 > 410 according to the order
of being selected. The estimated coefficients at different values of λ are used to
predict in the test set, from where we can evaluate the performance of different
λ values. Due to the fact that the total proportion of diseased cases is small, the
misclassification rate is not an ideal criterion for evaluating the prediction result
(see [21], page 22 for details). To reduce the risk of false negatives, we wish to keep
the sensitivity high enough and sacrifice some specificity. Hence for each fixed λ,
we pick a point from the empirical ROC curve using the criterion that the sum of
the sensitivity and specificity is maximized. The Figure 7 shows the area under the
curves and the optimal sum of the sensitivity and specificity at different values of
λ. At λ = 1.64, the sum is maximized at 1.44 with sensitivity 87% and specificity
57%, and the corresponding area under ROC curve is 0.77, and misclassification
rate is 38%.

Since the main purpose of the above analysis is for curve selection rather than
classification, once the functional covariates are selected, different classifiers can be
applied to perform classification based on the selected subset of curves. In addi-
tion to logistic regression, we also performed classification with 3 other classifiers
using the selected curves. By choosing λ = 1.64, we selected function predictor
curves at excitations: 330, 340, 360, 370, 410, 420, 460 and 480, and used the first
5 functional principal components to reduce the dimension. We refitted the logistic
model without penalty and compared the prediction results on the test set with 3
other classifiers in Table 2. The corresponding ROC curves are plotted in Figure 8.
From Figure 8, we find that logistic regression, k-nearest neighbor(KNN) and lin-
ear discriminant analysis(LDA) provide similar ROC curves. The highest sum of
sensitivity and specificity is 1.43, obtained by KNN, which is only slightly smaller
than the grouped lasso results at λ = 1.64. The LDA method provides the same
specificity with logistic regression but higher sensitivity.

5. Determining the Related Parameters

In our proposed model, two types of parameters need to be determined: the tuning
parameter λ and the truncation parameters δj , j = 1, . . . , J . In this section, we
discuss how to determine these parameters.

The choice of tuning parameter λ is important for prediction. In Meier et al. [10]
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Fig 6. The selected functional predictors (fluorescence spectral curves denoted by excitation wave-
lengths) at different λ values.

and in our paper, a test set is used to choose the λ with the best prediction per-
formance. However, there are also cases where only a small number of observations
are available and splitting out a test set is not possible. In this case, we can adopt
model selection criteria such as AIC, practical Cp or BIC. AIC tends to select a
model with optimal prediction, while BIC tends to identify the true sparse model
if the true model is included in the candidate set (see Yang [17]). In the grouped
Lasso linear regression model, Yuan and Lin [18] proposed an approximation to the
degrees of freedom and used a Cp criterion for selecting the tuning parameter λ.
Whether this criterion can be extended to logistic regression case for selecting λ is
an open question.

In addition to the tuning parameter λ, the truncation parameter δj in equation
(2.7) is also one concern of the study. In the real application of Section 4, we let

Table 2
The classification results using 4 different methods on the selected curves. Auc: Area under

ROC curve. MisR: Misclassification rate. Sens: Sesitivity. Speci: Specificity. Sum: The sum of
sensitivity and specificity. Logistic: logistic regression. KNN: k-nearest neighbor. LDA: linear

discriminant analysis. SVM: support vector machine.

Method Auc MisR Sens Speci Sum
Logistic 0.76 31% 71% 68% 1.39

KNN 0.68 27% 68% 74% 1.43
LDA 0.75 31% 75% 68% 1.42
SVM 0.64 28% 48% 79% 1.26
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Fig 7. Prediction results at different λ values.

δj ≡ δ and reported the curve selection and prediction results with δ = 5. To find
out whether other choices of δ are better for prediction, we compute the prediction
results for the test set at different number of δ but fixing λ = 1.64. The quantitative
prediction results are plotted in Figure 9. From Figure 9, we can see that using 11
functional principal components, the area under the ROC curve are maximized
at 0.780, and the sum of sensitivity and specificity are maximized at 1.47, with
a relatively small misclassification rate 31%. The sensitivity and specificity reach
81%, 66%, respectively.

It is also suspected that the optimal λ may interact with δ so determining one by
fixing the other may be suboptimal. In our study, we also have tried to determine
both the parameters by training the model under different combinations of them,
and predicting on the test set. It turns out that at around λ = 1.64 the prediction
results of the model is better than other choices of λ, and this is quite stable
across different choice of δ, especially for δ greater than 3. In Figure 10, We plot
the area under the ROC curve for 11 different δ and for appropriately selected λ
values across a meaningful range, i.e., λ = (5, 3, 1.64, 1.5, 1, 0.27). It shows that
the line with λ = 1.64 stays on the top for δ’s larger than 3. The reason for the
small interaction between λ’s and δ’s can be the following: the orthogonal basis
approximation tends to be accurate with only a few components. For example, in
functional principle components, over 97% of the variability will be counted in the
first priciple component score for all excitation curves. Later components only add
details to the model but does not change the likelihood dramatically. Therefore
the miminum of Equation (2.10) as a function of λ does not change much when δ
changes. But this is not true for non-orthogonal basis approximation methods such
as B-spline.

Note that choosing δj ≡ δ is just a convenient choice, which has the advantage
that it leaves only two parameters to determine and cross validation is feasible
for determining these parameters. However, it also brings in the risk of loosing
information. In general, one may use different truncation parameters if there are
large differences on the properties of the curves such as smoothness. If all curves
are obtained through similar sources and are similar in shape and other above
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Fig 8. ROC curves obtained when training 4 different classifiers based on selected curves and
predicting on the test set.

mentioned properties, it would be safe to choose a common δ. As an alternative,
since the step of estimating {cijk, k = 1, . . . , δj , j = 1, . . . , J} can be independent of
the group-wise Lasso step, one can use approximation criteria such as error sum of
squares(SSE) to determine the truncation parameters for each curve. For example,
if using functional principal component, we can choose a level of approximation(e.g.,
let the percentage of variabilities explained to be greater than 99%) and select the
number of eigenfunctions to achieve this. However, better approximation does not
necessarily give better prediction.

6. Discussion

We have proposed a functional logistic regression model to perform classification
and curve selection. This model automatically selects among the functional co-
variates through the grouped Lasso variable selection. The proposed model gives
information about which curves will be selected if we are willing to use a subset of
the functional covariates for classification. For example, under penalty λ = 5, the
best four functional predictors selected in our real data application are curves at
excitations 340, 410, 420 and 460. The selected functional covariates can then be
used with different classifiers for accurate classification.

There are several aspects that can be studied in more detail. Firstly, the basis
expansion step can be combined more tightly with the grouped Lasso regression
step using techniques similar to Müller and Stadtmüller [11]. It is necessary to
investigate the consistency properties of the estimated coefficient function βj(t)’s,
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Fig 9. Prediction results using different number of basis.

such as the oracle property. The algorithm of Meier et al. [10] requires that the
tuning parameter λ to be predefined on a grid of values, where they proposed
a way to find the range of λ of interest. This method, although faster, makes it
difficult to find a precise λ value that is optimal for prediction purposes. Efficient
algorithms for searching λ is of great importance especially when functional data
is involved.

Alternative methods for curve selection can be formulated through the Bayesian
paradigm. Bayesian variable selection models can be derived for selecting variables
at a group level and thus can be used for curve selection as well.

Appendix: Proof of Proposition 1

The proof of Proposition 1 uses a result stated in the following lemma.

Lemma 1. Let f : Rn 7→ R be a strictly convex function with a minimizer x̃, and
let g : Rn 7→ [0,∞) be a convex function. Then f + g has a unique minimizer x∗ in
Rn.

Proof. Let h(x) = f(x) + g(x). It is easy to show that h(x) is strictly convex from
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Fig 10. The area under the ROC curves for 6 different λ values and 11 different choice of FPC’s.

the definition. We claim that the existence of a minimizer x̃ of f implies that h
is coercive, which means h(x) → ∞ as ||x|| → ∞. The coerciveness and strict
convexity of h implies the existence of a unique minimizer x∗.

To show that h is coercive, it is sufficient to show that f is coercive (since g ≥ 0).
The minimizer x̃ of f is the unique minimizer of f by strict convexity. Also, f is
convex hence is continuous on Rn (see [15], page 82). Thus ∀ r > 0,∀ x such that
||x− x̃|| > r, we claim

f(x) >
b

r
||x− x̃||+ f(x̃)

where b = inf{f(x) : ||x− x̃|| = r}−f(x̃). Note that b exists and b > 0 by continuity
of f . To show this inequality, let x0 = r(x − x̃)/(||x − x̃||) + x̃, so that x0 lies on
the line formed by x and x̃, with ||x0 − x̃|| = r and ||x − x0|| = ||x − x̃|| − r.
Thus f(x0)− f(x̃) ≥ b by the definition of b. Now let α = r/||x− x̃||. We see that
x0 = αx+ (1− α)x̃. By strict convexity of f ,

f(x0) < αf(x) + (1− α)f(x̃)

Thus

b

r
||x− x̃||+ f(x̃) ≤ (f(x0)− f(x̃))

||x− x̃||
r

+ f(x̃)

< (αf(x) + (1− α)f(x̃)− f(x̃))
||x− x̃||

r
+ f(x̃)

= f(x)

Since ||x − x̃|| ≥ ||x|| − ||x̃||, ||x|| → ∞ implies ||x − x̃|| → ∞, which implies
f(x) → ∞ by the above inequality and the facts that b > 0, r > 0, f(x̃) finite.
Therefore, f is coercive, and so is h.
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Since h is coercive, we have h(x) → ∞ as ||x|| → ∞. Therefore, if we pick an
arbitrary point x1 ∈ Rn, there exists a constant δ > 0 such that h(x) > h(x1) for all
||x−x1|| > δ. Since the domain ||x−x1|| ≤ δ is compact and h(x) is strictly convex
on it, h(x) has a unique minimizer in ||x−x1|| ≤ δ, which we denote as x∗. (A strictly
convex real valued function defined on a compact domain has a unique minimum
on its domain.) This x∗ is also the global minimizer since h(x) > h(x1) ≥ h(x∗) on
||x− x1|| > δ.

Proof of Proposition 1: Based on results in Lemma 1, we let f to be −l(θ) and g
to be λ

∑J
j=1 s(δj)||bj ||2 , therefore our objective function in Equation (2.10) is the

sum of f and g, where θ = {α0, α, bj , j = 1, . . . , J}, and l(θ) =
∑n
i=1 yiηi − log(1 +

exp(ηi)) with ηi = α0 + zTi α+
∑J
j=1

∑δj

k=1 cijkbjk.
Firstly, we show that −l(θ) is strictly convex. It is sufficient to show that its

Hessian is positive definite. Since the Hessian takes the form

52
θ(−l(θ)) = XTDX

where D = diag{exp(ηi)/(1 + exp(ηi))2, i = 1, . . . , n}. It is positive definite since X
is of rank m (full rank). Secondly, since the maximum likelihood estimator exists,
−l(θ) has an unique minimizer. The existence of maximum likelihood estimator for
logistic regression requires some conditions for the design matrix X. Basically, the
n rows of X can not be completely separated or quasi-completely separated in Rm.
See [1] for details. In practice, as long as we can find a numerical solution for the
MLE at λ = 0, we would believe that the maximum likelihood estimator exists.
Finally, let g(b) = λ

∑J
j=1 s(δj)||bj ||2, bT = (bT1 , . . . , b

T
J ). It is easy to see that g(b)

is convex by the triangle inequality. Therefore by Lemma 1, Qλ(θ) has a unique
minimizer θ∗.
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Nonparametric Estimation of

Hemodynamic Response Function: A

Frequency Domain Approach

Ping Bai1 , Young Truong2 and Xuemei Huang3

University of North Carolina at Chapel Hill

Abstract: Hemodynamic response function (HRF) has played an important
role in many recent functional magnetic resonance imaging (fMRI) based brain
studies where the main focus is to investigate the relationship between stimuli
and the neural activity. Standard statistical analysis of fMRI data usually
calls for a “canonical” model of HRF, but it is uncertain how well this fits
the actual HRF. The objective of this paper is to exploit the experimental
designs by modeling the stimulus sequences using stochastic point processes.
The identification of the stimulus-response relationship will be conducted in
the frequency domain, which will be facilitated by fast Fourier transforms
(FFT). The usefulness of this approach will be illustrated using both simulated
and real human brain data. Under regularity conditions, it is shown that the
estimated HRF possesses an asymptotic normal distribution.
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1. Introduction

Consider a statistical problem in which data are acquired by applying stimuli at
times τ1 < τ2 < · · · and simultaneously a varying response Y (t) is recorded. Sup-
pose it is desired to conduct the associated statistical inference based on the model:

(1.1) Y (t) =
∑

j

h(t− τj) + ε(t),

where h(·) is an unknown function and ε(t) is a stationary, zero mean, noise series
with power spectrum given by sεε(·). It is assumed that the function h(t) = 0 for
t < 0 and will have finite duration.

This type of problems has played an important role in the fields of psychol-
ogy, neurobiology, neurology, radiology, biomedical engineering, and many others,
where data acquisition is carried out in functional magnetic resonance imaging
(fMRI) experiments. As a noninvasive technique, fMRI allows us to study dynamic
physiological processes at a time scale of seconds. The basis of fMRI is the Blood
Oxygenation Level Dependent (BOLD) effect [40]. Due to differential magnetic sus-
ceptibility of oxygenated (oxygen-rich) hemoglobin and deoxygenated hemoglobin,
the BOLD effect reflects the changes in hemodynamics which in turn yields greater
MRI intensity when brain activity increases (see [30]). It is this hemodynamic re-
sponse to the underlying neuronal activity that makes the fMRI signal in brain
areas of activation a blurred and delayed version of the stimuli. Figure 1 shows
the recorded BOLD signals (solid line) triggered by a single event (dashed line on
the left panel) and a sequence of consecutive of stimuli (dashed line on the right
panel) respectively. Both of them show the blur-and-delay effect caused by the
hemodynamic response.

In practice, the BOLD effect is modeled through the convolution of the stimulus
sequence X(·) and a hemodynamic response function (HRF) h(·) given by

(1.2) BOLD(t) = h⊗X(t) =
∫
h(t− u)X(u)du,

whose discrete time version is represented by model (1.1). Typically, an fMRI
dataset consists of a 3D grid of voxels, each containing a time series of measurements
that reflect brain activity. For each of roughly 200,000 voxels that lie inside the brain
images, we wish to carry out the estimation of the HRF which will subsequently
be applied to infer those voxels that were activated under certain experimental
conditions.

The rest of this paper is organized as follows. Our estimate is described in Sec-
tion 2, which is based on frequency domain methods applied to the point processes
and ordinary time series. A brief survey of HRF modeling is provided in Section 3.
Section 4 illustrates the performance of our proposed method through a simulated
data analysis. For the purpose of comparison, a real fMRI data set is analyzed
using the proposed method and a popular fMRI tool in Section 5. Discussions and
concluding remarks are given in Section 6. Proofs are given in the last section of
the paper.
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Fig 1. Left Panel: The recorded BOLD signal (solid line) triggered by a single event (dashed line).
Right Panel: The recorded BOLD signal (solid line) triggered by a typical block-design sequence
(dashed line).

2. A Frequency Domain Method for Estimating HRF

Model (1.1) has the structure of linear time invariant system carrying the stimuli
X(t) onto an response time series Y (t). These models are generally studied by the
frequency domain methods based on cross-spectral analysis (see [10]).

Define the system transfer function by

H(f) =
∑

u

h(u) exp(−iuf), f ∈ R.

Define the finite Fourier transform of Y (t) by

ϕT0 (f) ≡ ϕTY (f) =
T−1∑

t=0

exp(−ift)Y (t)

with a similar definition for ϕTε (f), f ∈ R. Also, define

ϕT1 (f) ≡ ϕTX(f) =
T−1∑

t=0

exp(−ift)X(t) =
∑

j

exp(−ifτj), f ∈ R,

the last sum is over the available stimuli before time T − 1. It follows from (1.1)
that

(2.1) ϕT0 (f) = H(f)ϕT1 (f) + ϕTε (f), f ∈ R.

Now let mf denote the integer m ∈ {0, 1, . . . , T − 1} such that 2πm/T is closest
to the (angular) frequency f ∈ (0, π/2). Let K denote a positive integer. Then, for
smooth H(·),

(2.2) ϕT0

(
2π
T

(mf + k)
)
≈ H(f)ϕT1

(
2π
T

(mf + k)
)

+ ϕTε

(
2π
T

(mf + k)
)
, k = 0,±1, . . . ,±K,
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hold for the 2K + 1 nearest frequencies around f of the form 2π(mf + k)/T . Thus
a reasonable estimate of H(f) can be obtained by regressing ϕT0 (2π(mf +k)/T ) on
ϕT1 (2π(mf + k)/T ) for k = 0,±1, . . . ,±K, which is given by

(2.3) Ĥ(f) = ŝ01(f)/ŝ11(f), f ∈ R,

where

ŝjj′(f) = (2K + 1)−1
K∑

k=−K
s̃jj′

(
2π
T

(mf + k)
)
,(2.4)

s̃jj′(f) = (2πT )−1ϕTj (f)ϕTj′(f), f ∈ R, j, j′ ∈ {0, 1}.(2.5)

Here a is the conjugation of a ∈ C. This is similar to the linear regression setting
and therefore the residual sum of squares (RSS) is given by

(2.6) ŝεε(f) =
2K + 1

2K + 1− 1
(
ŝ00(f)− ŝ01(f)ŝ−1

11 (f)ŝ10(f)
)
.

Note that

ŝεε(f) ∝ ŝ00(f)
(

1− |ŝ01(f)|2
ŝ11(f)ŝ00(f)

)
= ŝ00(f)(1−R2

01(f)),

where

|R̂01(f)|2 =
|ŝ01(f)|2

ŝ00(f)ŝ11(f)
, f ∈ R,

is the squared coherence, which lies between 0 and 1, the closer it is to 1 the stronger
is the linear relationship between the two series.

Let sεε(·) denote the power spectrum of the noise series. It can be shown that (see
Section 7) the estimate Ĥ(f) is asymptotically complex normal with mean H(f)
and variance sεε(f)/Kŝ11(f). And Ĥ(f1), Ĥ(f2), . . ., Ĥ(fM ) are asymptotically
independent normal for distinct f1, f2, . . ., fM [7].

In practice, we use a smoother estimate known as window estimate by observing
that (2.4) can be written more generally as

(2.7) ŝjj′(f) =
∑

k 6=0

b−1W

(
b−1

(
f − 2πk

T

))
s̃jj′

(
2πk
T

)
, f ∈ R,

where W (·) is a non-negative function called the weight or window function, and
b ≡ bT ↘ 0 is the smoothing parameter. It has been shown that (2.7) has better
sampling properties than (2.4) as an estimate of the cross-spectrum of the bivariate
time series. See [10] and Section 7. From now on, our estimate of H(f) will be based
on (2.3) and (2.7).

We remark that when j = j′, then (2.5) becomes

(2.8) s̃jj(f) = (2πT )−1ϕTj (f)ϕTj (f) = (2πT )−1|ϕTj (f)|2, f ∈ R,

which is the periodogram of the series Y (t) when j = 0, or of the series X(t) when
j = 1. The periodogram is an important statistic in spectral time series analysis.

Under certain conditions, R̂01(f) is asymptotically normal with mean R01(f)
and variance proportional to constant (1−R2

01(f))/(Tb). Moreover, if R01(f) = 0,
then

(2.9) F (f) =
c|R̂01(f)|2

1− |R̂01(f)|2
∼ F2,2c,
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where c = (bT/γ)− 1 and γ =
∫
λ2 with λ being the lag-window generator [39].

This result can be used to test for a response to the stimulus by computing
a test statistic for significant activation F (fa) at the fundamental frequency of
activation fa. Under the null hypothesis of no activation, the F -statistic at the
fundamental frequency of activation, F (fa), has a F distribution with 2 and 2c
degrees of freedom. Large values of F (fa) indicate a large effect at the fundamental
frequency.

The estimate of the impulse response function h(·) is then given by

ĥ(u) =
1
Q

Q∑

q=0

Ĥ

(
2πq
Q

)
exp

(
i
2πuq
Q

)
,

where Q ≡ QT denote a sequence of positive integers tending to ∞ with T .
Under certain conditions, (ĥ(u1), . . . , ĥ(uJ)) is asymptotically normal with mean
(h(u1), . . . , h(uJ)) and covariance matrix

2π
bT

∫
W (λ)2dλ · 1

Q2

∫
exp

(
i(uj − uk)λ

) sεε(λ)
s11(λ)

dλ, j, k = 1, 2, . . . J.

See Section 7 for more details.

3. A Brief Survey of HRF Modeling

The basis of model (1.1) is the linearity of BOLD fMRI responses when multiple
stimuli are presented in succession. This was first studied by Boynton, et al. [6].
The linearity arises from the fact that a stimulus induces the neural activity in a
specific region of the brain. This then brings blood flow changes (hemodynamics)
in that region, while BOLD fMRI responses are measured from these blood flow
changes. In addition to giving this clear picture of how BOLD fMRI works, the linear
transform model is important in two respects. Firstly, the assumption of linearity
of the fMRI response and neural activity makes it possible to determine changes
in neural activity by the amplitude changes in hemodynamic response. Secondly,
this linear transform model also shows that when multiple stimuli are presented in
succession, the hemodynamic response would be the summation of the individual
responses generated by the single stimulus respectively.

Modeling the relationship between the fMRI response and stimuli is a key step
towards detecting fMRI activity. Standard statistical analysis is carried out based
on the following model:

(3.1) Y (t) = β
∑

j

h(t− τj) + ε(t),

where the HRF h(·) is pre-specified and β is a voxel specific parameter, to be
utilized for testing fMRI activity [15, 21, 23, 24, 31, 33, 43]. The assumptions made
about the shape of the HRF vary among different methods. Some of them are very
stringent, while others are relatively more flexible. Typically, a “canonical” HRF
is employed to process fMRI data. Some studies have reported variation in the
shape of HRF across subjects [2, 4], and within the same subject across regions
[11, 32, 38].

Detecting fMRI activity has also been evolved from using block-designs (where
the stimulus times τi occur consecutively to form a block) to event-related fMRI
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(ER-fMRI) designs [41]. In the latter case, stimuli (or events) are applied for short
bursts in a stochastic manner. The recorded BOLD fMRI signals measure transient
changes in brain activity associated with discrete events. This feature makes ER-
fMRI a useful tool to estimate the change in the MR signal triggered by neuronal
activity.

As an early study of ER-fMRI, Dale and Buckner [16] correlated the selective
averaging (or time averaging) data and the fixed HRF induced data in a voxelwise
manner. Friston et al. [24] employed a Poisson function with a fixed parameter for
the HRF. In the general linear model (GLM) framework, Friston et al. [22] esti-
mated the HRF by two given temporal basis functions. To enhance its flexibility,
this idea was extended by Josephs et al. [31] to include more basis functions. These
are very important contributions since the basis sets allow one to estimate an HRF
of arbitrary shape for different events at different voxels of the brain, and at the
same time the inferences can be easily made. Many studies on modeling HRF have
since focused on the refinement and improvement of the basis sets idea. For example,
Woolrich et al. [44] introduced a technique by applying some constraints to avoid
nonsensical HRF, which is a big problem when using simple basis functions. More
recently, Lindquist and Wager [34] proposed another method, using three superim-
posed inverse logistic functions, to model the HRF. This paper also described some
most popular HRF modeling techniques, such as smooth finite impulse response
(FIR) filter [29], canonical HRF with time and dispersion derivatives [14] and the
canonical SPM HRF [25]. A flexible method based on splines has been considered
by Zhang et al. [47].

From a Bayesian perspective, Genovese [26] and Gössl et al. [28] proposed to
model the HRF by a number of parameters and prior distributions are given to each
parameter. See also Woolrich et al. [44] and Lindquist and Wager [34]. Inferences
of the parameters were then made at each voxel using Markov Chain Monte Carlo
(MCMC) technique. The disadvantage of these methods is the slow performance of
general MCMC techniques for the inferences.

The above methods are referred to as the time-domain methods. We now consider
the frequency-domain approach. Assuming a periodic stimulus design, fMRI time
series analysis can be greatly simplified in the frequency domain, which is more
natural as the problem of modeling the relationship between the response and the
stimuli is reduced to a few parameters related to the stimulus frequency information.
One of the first frequency domain approaches is given by Lang and Zeger [33], who
used model (3.1) along with a two-parameter gamma function to model the HRF.
The two parameters vary at different voxels and hence the estimated HRF varies
from voxel to voxel. It was reported that this approach has an identifiability problem
of the parameters. The issue was addressed in Marchini and Ripley [37] using a fixed
HRF approach.

We remark that a common theme among the time-domain methods for testing
activity is the two-step procedure: the extra step is required for modeling paramet-
rically the temporal noise series. This will affect the power of the test. While the
above frequency approaches avoided the noise modeling part, they lack the ability
to address: (1) the varying HRF issue, and (2) different types of stimulus designs.
Moreover, the linear transformed model of fMRI response has not been tested and
some studies [16, 30] reported the presence of non-linearity.

In Section 2, we described a regression approach based on model (1.1) for ad-
dressing these problems. The application of point processes to model the stimuli
is novel in the HRF modeling literature. The procedure is also greatly simplified.
Namely, it enables us to estimate the HRF directly and simultaneously test the lin-
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earity assumption in a single step. The idea of using point processes can be traced
back to the work of Brillinger [8, 9] who applied this to identification problems
emerged in neurophysiological neural spike train analysis.

4. Simulated Numerical Results for HRF estimation

We illustrate the usefulness of our procedure in a simulated study. Here we use one
of the HRF’s from the literature [16, 27] to generate the response. The stimulus
sequence contains a brief trial (1 second) intermixed with events “on” or “off”
(Figure 2a). In this experiment, each trial lasts for 18 seconds and there are sixteen
runs. So the “average” (because of the random “on” or “off”) frequency of the event
is 18/288 = 0.0625. The estimated power spectrum (Figure 2b) and the frequency
of the event are precisely estimated. The second peak corresponds to the frequency
of every other event. In the first experiment (Figure 3a-b), the response is given
by Y (t) = a

∫
h(t − u)X(u)du + ε(t) with a = 0.5 and the noise ε is generated

from an AR(1) with coefficient 0.7: ε(t) = 0.7ε(t − 1) + z(t), z(t) ∼ N(0, .32). In
the second experiment (Figure 3c-d), the noise is generated from an ARMA(2,2):
ε(t) − 0.8897ε(t − 1) + 0.4858ε(t − 2) = z(t) − 0.2279z(t − 1) + 0.2488z(t − 2),
z(t) ∼ N(0, .32). The AR(1) time series model was chosen to represent the default
settings in Statistical Paramtric Mapping (SPM) [21] and FMRIB Software Library
(FSL) [43], while the ARMA case was mainly for testing teh strengths of our method
under other types of correlated structures. The coefficients were selected to illustrate
the performance of the procedure under moderate serially correlated noise. Large
coherency at the stimulus frequency of 0.0625 indicates that the activation is strong,
and there is some linearity in the response and the stimulus series. This is also
confirmed by the highly significant F -statistics (Figures 4a-d). The significant level
is a dashed line that sits near the bottom of the graph. The variability of the
proposed estimated is illustrated in Figures 5a-c using various noise level with
SD=0.3, 0.5. We remark that the number of runs (=16) used in these simulations
is based on recently published articles.

We further apply the procedure to examine the main application of fMRI to de-
tect regions of activation. These are illustrated in Figures 6, 7. In these experiments,
the responses are generated from

Y (t) = a

∫
h(t− u)X(u) du+ ε(t),

with varying a to show contrast of the regions so that the sub-region has a higher
value of a. The noise component is ARMA(2,2), the same as in the previous ex-
periment with SD=0.3. The regions of activation are clearly captured (Figure 6)
when the contrast ratio is high. The effect of the contrast ratio on the detection of
region of activation is depicted in Figures 7. It is evident that the level of detection
depends on the contrast ratio.

5. A Real Data Analysis

5.1. Experiment Paradigm and Data Description

In this study, an fMRI data set was obtained from one human subject performing
a predefined event sequence as visually instructed. The stimulus sequence includes
two different events: right-hand and left-hand finger tapping. Each finger tapping
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Fig 2. Plot of the stimulus series (16 trials) with on-off pattern stimuli (every 18 seconds). The
whole duration lasts about 16 × 18 = 288 seconds. (b) The estimated power spectrum provides
frequency of the occurred events. The frequency associated with the first peak is about 18/288 =
0.0625. The second peak gives frequency of every other event, etc.

movement lasted around 1 second. The order of the sequence was predefined in a
random way. To avoid the overlapping of consecutive events, the time interval be-
tween two successive events was randomly selected from Uniform[18, 22]. A typical
sequence of stimuli is {R,L,R,R,L, L}.

During the experiment, 47 MR scans were acquired on a modified 3T Siemens
MAGNETOM Vision system. Each acquisition consisted of 49 contiguous slices.
Each slice contained 64× 64 voxels. Hence there were 64× 64× 49 voxels from each
scan. The size of each voxel is 3mm × 3mm × 3mm. Each acquisition took 2.9388
seconds, with the scan to scan repetition time (TR) set to be 3 seconds.

5.2. Analysis and Results

The data set was preprocessed using SPM5 [21]. The preprocessing included re-
alignment, slice timing correction, coregistration and spatial smoothing. We then
analyzed the processed data set using both our proposed method and SPM5. When
using SPM5, we used a canonical HRF with time and dispersion derivatives to
model the hemodynamic response [25] and its functional form is shown in Figure 5.
A t-statistic map was generated to show the activations triggered by the stimuli
and part of them is shown on the first row of Figure 8.

When using the proposed method to detect which regions of the brain were
activated by the finger tapping movements, we generated a spatial color map of
the p-value for each voxel. The p-values were calculated based on the test defined
by (2.9). Thus the activation regions are identified by the F statistics that are
significant. The p-map generated this way is shown on the second row in Figure 8.

The four image slices represent the spatial maps of the right-hand activation.
The red areas illustrate activated brain regions. Brighter color indicates higher
intensity. Our p-maps demonstrate the classic brain activation patterns during hand
movement as described above. However, the t-maps of the same four slices generated
using SPM5 do not show any activation, as seen from the first row of Figure 8.
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Fig 3. The fMRI responses. In these experiments, the responses are generated from Y (t) =

(0.5)
∫
h(t − u)X(u) du + ε(t) with ε(t) = 0.7ε(t − 1) + z(t), z ∼ N(0, .32) in (a) and (b); ε(t) −

0.8897ε(t− 1) + 0.4858ε(t− 2) = z(t) − 0.2279z(t− 1) + 0.2488z(t− 2), z ∼ N(0, .32) in (c) and
(d). The stimuli are the same as in Fig. 2.

Next we plot the estimated HRFs at voxels which are shown to be activated ac-
cording to Figure 8. Figure 9 displays the estimated HRFs for voxels (with F > 20)
selected from primary motor cortex (PMC). Figure 10 displays the estimated HRFs
in cerebellum, and Figure 11 shows the estimated HRFs in the supplementary motor
area (SMA). These figures were obtained by first computing the F -statistics (2.9)
followed with the selection of those voxels with the F values greater than 20. This
threshold was chosen to adjust for the multiple comparison effect and was car-
ried out by computing the F statistics over those voxels that are known to be not
activated by the stimuli. For example, we used the WFU PickAtlas software [36]
to generate region of interest (ROI) mask in the cerebro spinal fluid area of the
brain. Then computed the F statistics over this area, followed with a density es-
timate (eg, kernel method, or simply histogram) to select the thresholding value.
There are about 20,000 voxels in the cerebro spinal fluid area which can be used to
calibrate the null distribution for detecting fMRI activity.
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Fig 4. (a) and (c): The estimated coherency function with pointwise confidence intervals. Large
coherence values at the event frequencies indicate perfect linear time invariant system used in this
simulation. (b) and (d): The F -test for coherency with the dashed-line showing the significant
level. (a) and (b) have the same conditions as (a) and (b) of Fig. 3; similarly for (c) and (d).

2 4 6 8 10 12 14

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

t

h
rf

(a) 95%VB, 16 runs, sd=0.3

2 4 6 8 10 12 14

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

t

h
rf

(b) 95%VB, 16 runs, sd=0.5
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(c) 95%VB, 32 runs, sd=0.5

Fig 5. (a) 95% variation bands (VB) are obtained from estimates of the HRF using 100 random
samples simulated from the model by trimming off the 2.5% both ends. (b) Same as in (a) except
the noise SD has increased to 0.5. This clearly indicates the variance of the proposed estimate
depends on the variance of the noise. (c) Same as in (b) by doubling the number of runs. This
illustrates the variance of the estimate is inversely proportional to the duration of the experiment.
In these experiments, the responses are generated from Y (t) =

∫
h(t − u)X(u) du + ε(t) with

ε ∼ ARMA(2, 2). The parameters are the same as in Fig. 3.
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(a) Region of activation (b) Estimated region of activation

(c) Region of activation (d) Estimated region of activation

Fig 6. Estimated region of activation. In these experiments, the responses are generated from
Y (t) = a

∫
h(t − u)X(u) du + ε(t) with a = 0.1 outside and a = 1.0 inside the sub-region,

respectively. There are two slices with different region sizes and locations. Each slice is 8× 8. (a)
and (c) are the true regions, (b) and (d) are the estimated regions. The noise ε is generated from
an ARMA(2,2). The stimuli are the same as in Fig. 2.

All of them have the form that agrees with empirical experience. It is well es-
tablished that the contralateral cerebral hemisphere motor areas such as primary
motor cortex (PMC), and ipsilateral cerebellar areas play dominant role in motor
functions in normal human subjects [1, 3, 17, 19]. Our new methods validate un-
equivocally this known motor activation pattern with single finger movement in
a single subject, whereas traditional SPM5 failed to do. Adequate imaging anal-
ysis techniques to demonstrate the involvement of those structures during motor
function is superior important. PMC is the primary brain region directly control
human movement, basal ganglia and cerebellar modulate its functions through a
number of cortical motor associated areas of the brain (such as SMA). Dysfunctions
of these structures have known to cause a variety of movement disorders such as
Parkinson’s disease and cerebellar ataxia [1]. Our methods might provide “higher
resolution” statistical analysis methods for clinical and neuroscientist to define the
roles of these structures in disease stages using fMRI.

5.3. Implications

(1) We demonstrated that our method handles statistical issues related to event-
related experiments well. (2) It is nonparametric in the sense that the functional
form of HRF is not specified a priori. Hence it is an useful diagnostic tool for other
approaches that may be biased because of misspecification of HRF. (3) Variation
of HRF in the brain has been under active research [18], and the nonparametric
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(a) Estimated region of activation, a=0.2 (b) Estimated region of activation, a=0.3

(c) Estimated region of activation, a=0.4 (d) Estimated region of activation, a=0.5

Fig 7. Estimated region of activation with varying contrast ratios. In these experiments, the
responses are generated from Y (t) = a

∫
h(t− u)X(u) du+ ε(t) with a = 0.2, 0.3, 0.4, 0.5 outside

the sub-region and a = 1.0 inside the sub-region. The noise ε is generated from an ARMA(2,2).
These results illustrate that accuracy of the estimates depends on the signal-to-noise (or contrast)
ratio: The contrast ratio is proportional to 1/a. (a) Here a = 0.2 implies that the signal is weaker
than that in Fig. 6, but the contrast is still high and so the estimated region can still be clearly
identified. (b) The contrast here is weaker with a = 0.3. (c) Weaker contrast with a = 0.4, and
(d) fuzzy region due to the weakest contrast used in this experiment.

approach offers a systematic way to study the variation without requiring HRF to
have the same shape over all voxels. (4) The linear relationship specified through
the BOLD signal can be examined statistically by carrying out a formal test of
hypothesis. This is important in verifying the linearity assumption employed in
SPM [20, 23, 24, 45] in the process of constructing the T -map. (5) It is relatively
easy to interpret the results using our approach as no prior specification of HRF is
required (as is done in SPM [21]/FSL [43]/AFNI [15]).

5.4. Discussions

There are many ways to detect fMRI activity. The critical problem is to estimate
the statistical significance, which depends on the estimation of both the magnitude
of the response to the stimulus and the serial dependence of the time series and
especially on the assumptions made in that estimation. Nonparametric spectral
density estimation is shown to be self-calibrating and accurate when compared
to several other time-domain approaches [12, 13], SPM: [20, 23, 24, 45, 46]. In
particular, spectral technique to detect periodic and event-related activations has
a distribution theory with significance levels down to 1 in 100,000, levels which
are needed when a whole brain image is under consideration. The technique is
especially resistant to high frequency artifacts that are found in some datasets and
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SPM t-map

Proposed method p-map

Fig 8. The four related slices that contain the areas activated by right-hand finger tapping. The
first row consists of the t-maps generated by SPM5 and they do not show any activation. The
second row contains the p-maps generated by the proposed method. The first slice indicates the
activated areas in cerebellum. The second slice contains basal ganglia. The third slice contains
supplementary motor area (SMA) and the fourth slice shows primary motor cortex (PMC).

it was demonstrated that time-domain approaches may be sufficiently susceptible
to these effects to give misleading results. Also, these techniques are capable for
detecting activations in clumps of a few (even one) voxel in periodic designs, yet
produce essentially no false positive detections at any voxels in null datasets [37].

6. Concluding Remarks

It is now widely accepted that fMRI modeling requires flexible HRF modeling, with
the HRF varying spatially and between subjects. Flexibility in linear modeling has
been introduced with the use of basis functions [22]. However, basis functions suffer
from a number of limitations. They impose a hard constraint on the allowed HRF
shape and often the extent of the constraint is difficult to control and/or interpret.
To overcome these problems, we formulated a procedure based on model (1.1) and
FFT. The usefulness has been demonstrated empirically.

We remark that time-domain methods such as SPM [21], FSL [43], FIR [34, 35]
and local adaptive spline estimate [47] in modeling the HRF are generally very sensi-
tive to the linearity assumption and the error structures they employ. Any approach
proposed within the time-domain may have difficulty providing resistant estimates.
There is also no guarantee that the parametric noise model chosen will be suffi-
ciently flexible to capture the true form of the correlation structure even if artifacts
are removed and a model selection procedure is employed [18, 37]. Therefore signif-
icant loss in statistical efficiency can occur if these assumptions are invalidated. In
contrast, if these assumptions are valid then the use of a frequency approach will
result in a comparatively small loss in efficiency [10]. When considering voxel time
series from fMRI datasets there can be no guarantees that the correct time domain
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(b) Estimates of hrf in pmc

Fig 9. The histogram for the F -stat and the HRF estimates in the primary motor cortex (PMC)
area with F > 20. Each finger-tapping task lasted around 1 second. The order of the sequence
was predefined in a random way. The time interval between two successive events was randomly
selected from Uniform (18,22). Each acquisition took 2.9388 seconds, with the scan to scan rep-
etition time (TR) set to 3 seconds.
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(b) Estimates of hrf in cerebellum

Fig 10. The histogram for the F -stat and the HRF estimates in the cerebellum area with F > 15.

approach has been chosen and a frequency approach seems the most prudent in
this context. It is often demonstrated that the assumptions of commonly proposed
time-domain models are not resistant to high frequency artifacts.

It is generally believed that the direct analysis of nonperiodic designs will not
be as simple as that of the periodic designs, since the response due to the stimulus
will be spread over a range of frequencies. Marchini and Ripley [37] suggested that
this may be addressed by combining their method with the iteratively reweighted
least squares [33] in the spectral domain and the basis functions [22]. However, this
method will not be easily extended to model the HRF discussed in this paper. By
formulating the problem using point processes, the frequency method advocated
by [37] can be easily generalized to handle event-related designs. We also observe
that our method is applicable to block designs since the stimuli can be put next to
each other to form a block. Thus this unified approach significantly improves the
estimation of the HRF described in [33, 37].

The flexible frequency approach proposed here acts as an insurance policy against
the results being badly affected by artifacts, and is guaranteed to be near-optimal
under all realistic operational conditions. It also offers a quick and accurate way to
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(b) Estimates of hrf in SMA

Fig 11. The histogram for the F -stat and the HRF estimates in the cerebellum area with F > 15.

check the calibration of the procedure. Further investigations will be carried out for
an extensive comparative study on these maps. A concern about our procedure is
the choice of weight function W (·) and bandwidth b given in (2.7). The former is less
crucial and it can be addressed by choosing one of commonly used weight functions
described in Newton [39]. Bandwidth selection appears to be more serious and it
would seem to require adaptive methods such as cross-validation. Based on our
experience and the fact that the HRF (blood flow) is relatively smooth, the choice
of bandwidth therefore plays a less significant role. Nevertheless, we do observe that
the spectral properties of the stimuli can be closely examined by the designs of the
experimental protocols, which to some extent can help determine the smoothness
of the estimate of HRF. This project is currently underway along with the use of
splines for estimating the spectra.

7. Sampling Properties of the Estimates

The sampling properties of the HRF estimate will rely on the spectral properties of
the stimulus X(t), which is a point process. They also depend on the spectral prop-
erties of the response Y (t) and the noise series ε(t), which are real-valued ordinary
stationary time series. Thus this section starts with a brief summary of the spectral
properties of stationary time series which will be denoted by X(t). This is followed
by a discussion of the cumulants, which are essential for establishing asymptotic
distributions of the estimates. Subsequent sections describe sampling properties of
various statistics involved in establishing the properties of HRF estimate.

7.1. Point Process

Consider a point process X(t) with points occurring at times 0 ≤ τ1 ≤ τ2 ≤ · · ·
with X(t) denoting the number of points in the interval (0, t]. When it exists, the
rate of the process at time t is given by

pX(t) = lim
v↓0

1
v
E
(
X(t+ v)−X(t)

)
.

The expected number of points in the small interval (t, t+v] is given by pX(t)v+
o(v). Suppose orderliness, that is, the points of its realizations are isolated, multiple
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points do not occur. Then dX(t) = 0 or 1 and one must have

P{dX(t) = 1} = pX(t) dt.

The rate function pX(t) is seen to have an interpretation as a probability.
In the second-order case one defines the second-order product density as

pXX(t1, t2) = lim
v1,v2↓0

1
v1v2

E
(
X(t1 + v1)−X(t1)

)(
X(t2 + v2)−X(t2)

)
, t1 6= t2.

In view of the orderliness of the process, P{dX(t) = 1 and dX(t) = 1} = P{dX(t) =
1}, the case t1 = t2 can be included via

P{dX(t1) = 1 and dX(t2) = 1} = E
(
dX(t1)dX(t2)

)

=
(
pXX(t1, t2) + δ(t1 − t2)pX(t2)

)
dt1 dt2,

where δ(·) is the Dirac delta function: δ(·) ≥ 0 and
∫
δ(t)ϕ(t) dt = ϕ(0) for infinitely

differentiable real-valued function ϕ with compact support. It is useful to recall here
that δ is the (generalized) derivative of the Heaviside function: H(·) = 1(0,∞)(·).
See [42].

The covariance density of the process is defined by

qXX(t1, t2) = pXX(t1, t2)− pX(t1)pX(t2),

with the interpretation

cov{dX(t1), dX(t2)} =
(
qXX(t1, t2) + δ(t2 − t1)pX(t2)

)
dt1 dt2.

The conditional intensity of the process is defined by pXX(t)/pX(t) with the inter-
pretation

P{dX(t2) = 1 | dX(t1) = 1} =
(
pXX(t1, t2)/pX(t1)

)
dt2.

A point process is said to be stationary when its probability properties are un-
affected by simple shifts of time. In this case one has

P{dX(t) = 1} = pX dt,

P{dX(t1) = 1 and dX(t2) = 1} =
(
pXX(t2 − t1) + δ(t2 − t1)pX

)
dt1 dt2

cov{dX(t1), dX(t2)} =
(
qXX(t2 − t1) + δ(t2 − t1)pX

)
dt1 dt2.

By analogy with what is done in the ordinary time series case one may define the
power spectrum at frequency f by

sXX(f) =
1

2π

∫
e−ifu

(
cov{dX(t+ u), dX(t)}/dt

)
du.

For multivariate process X(t) = {X1(t), . . . , Xm(t)}, it may be convenient to
consider

P{dXj(t) = 1} = Cj dt, j = 1, . . . ,m,

and
cov{dXj(t+ u), dXk(t)} = Cjk(du) dt, j, k = 1, . . . ,m.

The power spectrum at frequency f is defined by

sjk(f) =
1

2π

∫
e−ifuCjk(du), j, k = 1, . . . ,m.
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7.2. Stationary Time Series

Let X(t) = (X1(t), . . . , Xr(t)), t = 0, 1, 2, . . . , denote a vector-valued stationary
time series. Set

Cjk(u) = cov{Xj(t+ u), Xk(t)}, j, k = 1, . . . , r.

The power spectrum at frequency f is defined by

sjk(f) =
1

2π

∑

u

e−ifuCjk(u), f ∈ R, j, k = 1, . . . , r.

7.3. Cumulants and Spectra

Definition 1. Let X1, X2, . . . , Xr denote random variables with finite rth moment.
The rth order joint cumulant of X1, X2, . . . , Xr is defined by

cum(X1, X2, . . . , Xr) =
∑

(−1)p−1(p− 1)!


∏

j∈ν1
Xj


 . . .


∏

j∈νp

Xj


 ,

where the summation extends over all partitions ν1, . . . , νp, p = 1, . . . , r of
{1, 2, . . . , r}.

Remarks

1. When X1 = X2 = · · · = Xr, the definition gives the cumulant of order r of a
univariate random variable.

2. cum(X1, X2, . . . , Xr) is also given by the coefficient of (i)rt1 . . . tr in the Taylor
series expansion of log(E exp i

∑r
1Xjtj).

Given r time series X1(t), X2(t), . . . , Xr(t) with each having finite rth moment,
we define

C1,...,r(t1, t2, . . . , tr) = cum(X1(t1), X2(t2), . . . , Xr(tr)).

For stationary time series,

C1,...,r(t1, t2, . . . , tr) = C1,...,r(t1 − tr, t2 − tr, . . . , tr−1 − tr, 0),

which is a function of r−1 variables. In this case, the rth order cumulant spectrum,
s1,...,r(f1, f2, . . . , fr−1), is defined by

s1,...,r(f1, f2, . . . , fr−1) =

(2π)−k+1
∑

u1,u2,...,ur−1

C1,...,r(u1, u2, . . . , ur−1) exp


−i

r−1∑

j=1

ujfj


 ,

f1, f2, . . . , fr−1 ∈ R, r ≥ 2.

For a more detailed discussion of cumulants and their spectra, see [10].
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7.4. Fast Fourier Transforms

Let aj(·) : R → R, j = 1, 2, denote tapering functions. The discrete Fourier
transform for the univariate series Xj is defined by

ϕTj (f) ≡ ϕTXj
(f) =

∑

t

aj(t/T )Xj(t) exp(−ift), f ∈ R, j = 1, 2.

For vector-valued series X, it is given by

ϕT (f) ≡ ϕT
X(f) =

(
ϕT1 (f)
ϕT2 (f)

)
, d ∈ R.

Set aTj (t) = aj(t/T ), j = 1, 2. For jm ∈ {1, 2}, m = 1, . . . ,M ,

ATj1,...,jM (f) =
∑

t

(
M∏

m=1

aTjm(t)

)
exp(−ift), f ∈ R.

Condition 1. The tapering function a(·) : R → R has a compact support with
bounded first derivative. Furthermore,

∫
a(u) du = 1 and

∫
|a(u)| du <∞.

Condition 2. The covariance function satisfies
∑

u

Cjk(u) <∞,

and ∑

u1,...,uM−1

Cj1...jM (u1, . . . , uM−1) <∞, j1, . . . , jM = 1, 2.

The second part of the above condition is necessary for establishing the asymp-
totic properties of the estimates to be considered in this section.

Lemma 1. Suppose Conditions 1 and 2 hold. Then

sup
f1,...,fM

∣∣cum(ϕTj1(f1), . . . , ϕTjM (fM ))

− (2π)M−1ATj1,...,jM (f1 + · · ·+ fM ) sj1,...,jM (f1, . . . , fM )
∣∣ = o(T ).

Condition 3. The covariance function satisfies
∑

u

|u|cjk(u) <∞,

and
∑

u1,...,uM−1

|u1 · · ·uM−1|Cj1...jM (u1, . . . , uM−1) <∞, j1, . . . , jM = 1, 2.

Lemma 2. Under Conditions 1 and 3,

sup
f1,...,fM

∣∣cum(ϕTj1(f1), . . . , ϕTjM (fM ))

− (2π)M−1ATj1,...,jM (f1 + · · ·+ fM ) sj1,...,jM (f1, . . . , fM )
∣∣ = O(1).
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Proof. We now prove Lemmas 1 and 2. If follows from

|aj(t+ u)ak(t+ v)− aj(t)ak(t)| ≤ |aj(t+ u)ak(t+ v)− aj(t+ u)ak(t)|
+ |aj(t+ u)ak(t)− aj(t)ak(t)|

and Condition 1 that there is a constant K1 such that

|
∑

t

aTj1(t+ u1) · · · aTjM−1
(t+ uM−1)aTjM (t) exp(−ift)−ATj1...jM (f)|

≤ K1(|u1|+ · · ·+ |uM−1|).

By the cumulant property,

cum(ϕTj1(f1), . . . , ϕTjM (fM ))

=
∑

t1

· · ·
∑

tM

aTj1(t1) · · · aTjM (tM ) exp

(
−i

M∑

m=1

fmtm

)

× Cj1,...,jM (t1 − tM , . . . , tM−1 − tM )

=
2(T−1)∑

u1=−2(T−1)

· · ·
2(T−1)∑

uM−1=−2(T−1)

exp

(
−i

M−1∑

m=1

fmtm

)
Cj1,...,jM (u1, . . . , uM−1)

×
∑

t

aTj1(t+ u1) · · · aTjM−1
(t+ uM−1)aTjM (t) exp

(
−i

M∑

m=1

fmt

)

= εT +
2(T−1)∑

u1=−2(T−1)

· · ·
2(T−1)∑

uM−1=−2(T−1)

exp

(
−i

M−1∑

m=1

fmtm

)

Cj1,...,jM (u1, . . . , uM−1)ATj1...jM (f1 + · · ·+ fM ),

where

|εT | ≤ K2

2(T−1)∑

u1=−2(T−1)

· · ·
2(T−1)∑

uM−1=−2(T−1)

(|u1|+ · · ·+ |uM−1|)Cj1,...,jM (u1, . . . , uM−1).

It now follows from Condition 3,

T−1|εT | ≤ K2

2(T−1)∑

u1=−2(T−1)

· · ·
2(T−1)∑

uM−1=−2(T−1)

T−1(|u1|+ · · ·+ |uM−1|)

Cj1,...,jM (u1, . . . , uM−1),

T−1(|u1|+ · · ·+ |uM−1|)→ 0 and the dominated convergence theorem that

(7.1) |εT | = o(T ).

Lemmas 1 and 2 follow from this and

sj1,...,jM (f1, . . . , fM−1)

= (2π)M−1
∑
· · ·
∑

exp

(
−i

M−1∑

1

fmum

)
Cj1,...,jM (u1, . . . , uM−1) + o(1).
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7.5. Complex Normal

Let X denote an k-dimensional random vector whose components are complex-
valued random variables. If, for some µ ∈ Ck and k × k Hermitian non-negative
definite matrix Σ (that is, Σ = Σ̄>),

(
ReX
ImX

)
∼ N2k

((
Reµ
Imµ

)
, 1

2

(
Re Σ −Im Σ
Im Σ Re Σ

))
,

we say X has a complex normal distribution with mean µ and covariance matrix
Σ, and is abbreviated by X ∼ N c

k(µ,Σ).
The FFT is asymptotically normal with mean specified according to the fre-

quency f as described below.

Theorem 7.1. Under Conditions 1 and 2, ϕTj (f) is asymptotically

1. N c
1 (0, 2πTsjj(f)Ajj(0)) if f 6= 0 mod π,

2. N1(TcjAjj(0), 2πTsjj(0)Ajj(0)) if f = 0,±2π, . . . ,
3. N1(0, 2πTsjj(π)Ajj(0)) if f = ±π, . . . .
Note that Ajj(0) =

∫
a2
j . The above result implies that the real and the imaginary

part of ϕTj (f) are approximately independent. Each is approximately normal with
mean and variance πTsjj(f)

∫
a2
j .

Proof. To prove Theorem 7.1, we note that by Condition 1, ATj1,...,jM (f) = O(T ).
Recall that the Gaussian distribution has cumulants of order greater than 2 van-
ishes. The desired result now follows from Lemmas 1, 2 and that fact that

T−M/2 cum(ϕTj1(f1), . . . , ϕTjM (fM ))

= T−M/2(2π)M−1ATj1,...,jM (f1 + · · ·+ fM ) sj1,...,jM (f1, . . . , fM ) + o(T 1−M/2)

→ 0 for M > 2 as T →∞.

7.6. Asymptotics for Periodograms

The distributions of the FFT suggests the following statistic:

s̃jj(f) = |ϕTj (f)|2/
(

2π
∑

t

[aj(t/T )]2
)
, f ∈ R.

This is called periodogram and is an estimate of the spectral density function sjj .
For more historical remarks, see [10]. Note that if there is no tapering function, the
periodogram is given by

s̃jj(f) = (2πT )−1|ϕTj (f)|2, f ∈ R.

Let fm = 2πm/T , m = 0,±1,±2, . . . ,±T/2 denote the Fourier frequencies. The
result below describes the asymptotic distribution of the periodograms.

Theorem 7.2. Under Conditions 1–3, s̃jj(fm), m = 1, . . . ,M = T/2, are asymp-
totically independent sjj(fm)χ2

2/2. Also s̃jj(f) is asymptotically sjj(f)χ2
1 for f =

±π,±3π, . . . , independent of the s̃jj(fm), m = 1, . . . , T/2.
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Proof. The proof follows from Theorem 7.1 and the definition of the chi-square
distribution.

The above result shows that the asymptotic variance of the periodogram is ap-
proximately sjj(f)2, which is usually positive. Thus the periodogram is not a con-
sistent estimate of the spectral density function. The following section will present
a class of consistent estimates obtained by smoothing the periodograms.

7.7. Window Estimates — The Smoothed Periodograms

A class of consistent estimates can be obtained by using a running mean or local
average of the periodograms. Specifically, set

ŝ(fm) = (2K + 1)−1
K∑

k=−K
s̃jj

(
2π
T

(m+ k)
)
.

It follows from the asymptotic distributional properties of the periodograms (The-
orem 7.2) that ŝ(fm), m = 1, . . . , T/2, are asymptotically independent with ŝ(f) ∼
s(f)χ2

4K+2/(4K+2) if f 6= 0, and ŝ(0) ∼ s(0)χ2
2K/(2K). An important implication

of the above result is that consistency can be achieved by letting K → ∞ and
K/T → 0 as T →∞.

More generally, let W (·) denote a weight function. Set

(7.2) ŝjj′(f) =
∑

k 6=0

b−1
T W

(
b−1
T

(
f − 2πk

T

))
s̃jj′

(
2πk
T

)
,

where
s̃jj′(f) = (2πT )−1ϕTj (f)ϕTj′(f), f ∈ R,

and bT is referred to as the bandwidth or window width that will be specified
more clearly later. Certain properties of the weight function W (·) will be required
in order to assure that the above estimate is consistent.

Condition 4. The weight function W (·) : R→ R is a symmetric probability density
function with a compact support [−π, π].

Under this condition, the bias of the window estimate is given by

E(ŝjj(f)) =
∫
W (λ)sjj(f − bTλ) dλ+O(T−1b−1

T ).

In fact, more properties can be obtained and are stated in the following result.

Theorem 7.3. Under Conditions 1–3 and suppose that the spectral density function
sjj does not vanish. Let bT → 0 and bTT → ∞ as T → ∞. Then, ŝ(fm), m =
1, . . . ,M , are asymptotically normal with mean zero and covariance structure given
by

(7.3) lim
T→∞

bTT cov(ŝ(f1), ŝ(f2)) =

{
0 if f1 6= f2,

2πs(f)2
∫
W 2 otherwise.

imsart-coll ver. 2008/08/29 file: Truong.tex date: March 25, 2009



212 Bai, Truong and Huang

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Proof. Direct computation shows that

cov(s̃jj(f1), s̃jj(f2))

= sjj(f1)

{(
sin T (f1 + f2)/2
T sin (f1 + f2)/2

)2

+
(

sin T (f1 − f2)/2
T sin (f1 − f2)/2

)2
}

+O(1/T ).

Moreover,

cov(ŝjj(f1), ŝjj(f2)) = 2πT−1

∫
WT (f1 − λ)WT (f2 − λ)sjj(λ)2 dλ

+ 2πT−1

∫
WT (f1 − λ)WT (f2 + λ)sjj(λ)2 dλ

+O(b−2
T T−2) +O(T−1),

where

WT (λ) = b−1
T

∞∑

k=−∞
W (b−1

T (λ+ 2πk)).

The indicated covariance structure (7.3) is an easy consequence of these results.
To obtain the asymptotic normality, we need to show that all cumulants of order

higher than 2 tend to zero as T →∞. This is carried out by directly computing the
cumulants of the window estimates in a manner similar to the proof of Lemma 1.

7.8. Estimating the Transfer Function

Theorem 7.4. Suppose that

1. ε(t), t = 0, 1, . . . satisfy Condition 2 and have mean zero,
2. X(t) is uniformly bounded and s11 6= 0,
3.
∑
u |u|h(u) <∞,

4. W in Condition 4 is a uniform kernel.

Let bT → 0, bTT → ∞, b5TT → 0 as T → ∞. Then Ĥ(f1), . . . , Ĥ(fM )) is complex
normal with mean (EĤ(f1), . . . , EĤ(fM )) and covariance matrix whose entries are
given by

cov(Ĥ(f1), Ĥ(f2)) = η(f1 − f2)
2πsεε(f1)
bTTs11(f1)

∫
W 2,

where η(0) = 1 and η(f) = 0 for f 6= 0.

The weight function W is assumed to be uniform on [−π, π] in order to simplify
the presentation of the above asymptotic properties of the estimate of the transfer
function. A more general approach can be found in [10].

Proof. We begin the proof of Theorem 7.4 with two lemmas.

Lemma 3. Let (Vn) denote a sequence of random vectors converging in distribution
to V. Then there exists a probability space such that Vn converges to V almost
surely.

Proof. The proof can be found in [5].

Lemma 4. Let (Vn) denote a sequence of random vectors in Rp converging in
distribution to N c

p(0, Ip) and (Un) a sequence of p × p unitary matrices. Then
UnVn converges to N c

p(0, Ip) as n→∞.

imsart-coll ver. 2008/08/29 file: Truong.tex date: March 25, 2009



Temporal Modeling of MRI Data 213

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

Proof. This follows from Lemma 3.

Before proceeding to the proof, we remark that the following argument is sim-
plified by assuming the series X to be non-random. The result nevertheless holds
for general random X. Let ϕTj , j = 0, 1, be the Fourier transform of Y and X,
respectively. Let 2πk/T denote the Fourier frequency that is nearest to λ. Then

ϕT0 (2π(k + l)/T )

= H(2π(k + l)/T )ϕT1 (2π(k + l)/T ) + ϕTε (2π(k + l)/T ) +O(1)

= H(λ)ϕT1 (2π(k + l)/T ) + ϕTε (2π(k + l)/T ) +O(1), l = 0,±1, . . . ,±m,

where O(1) is uniformly in l. Now let D0 denote the 1× (2m+ 1) matrix given by

D0 =
1√
2πT

[
ϕT0 (2π(k −m)/T ) · · · ϕT0 (2πk/T ) · · · ϕT0 (2π(k +m)/T )

]
.

Define D1 and Dε similarly. Then

D0 = H(f)D1 + Dε +O(T−1/2).

Let U ≡ UT = [U1,U0] be a (2m+1)×(2m+1) unitary matrix whose first column
is U1 = DH

1 (D1DH
1 )−1/2, where DH = D

>
is the conjugate transpose of D. Then

D0U = H(f)D1U + DεU +O(T−1/2).

The first and the remaining columns of these matrices yield

[Ĥ(f)−H(f)]ŝ11(f)1/2(2m+ 1)1/2 = DεU1 +O(T−1/2),(7.4)

D0U0 = DεU0 +O(T−1/2).(7.5)

By the property of the unitary matrix,

(2m+ 1)ŝ00 = D0DH
0 = D0U1UH

1 DH
0 + D0U0UH

0 DH
0

= D0DH
1 (D1DH

1 )−1D1DH
0 + D0U0UH

0 DH
0 .

Thus

(7.6) ŝεε = D0U0UH
0 DH

0 = DεU0UH
0 DH

ε +Op(T−1/2).

Now, according to Theorem 7.1, Dε →d N c
2m+1N(0, sε,ε(f)I) and therefore

sε(f)−1/2Dε →d N
c
2m+1N(0, I). By Lemma 4, sε(f)−1/2DεU →d N

c
2m+1N(0, I),

or DεU →d N
c
2m+1N(0, sε(f)I). This, together with (7.4) and (7.6) yield the de-

sired result. This completes the proof of the theorem.

7.9. Estimating the Hemodynamic Response Function

From
H(f) =

∑

u

h(u) exp(−iuf),

we see that the hemodynamic response function is given by

h(u) =
1

2π

∫ 2π

0

H(f) exp(iuf) df, u = 0,±1,±2, . . . .
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Let Ĥ(f) denote an estimate of H(f) given by the last section, and let Q ≡ QT
denote a sequence of positive integers tending to ∞ with T . As an estimate of h(u)
by approximating the integral using finite sums, we define

ĥ(u) =
1
Q

Q∑

q=0

Ĥ

(
2πq
Q

)
exp

(
i
2πuq
Q

)
, u = 0,±1,±2, . . . .

Theorem 7.5. Suppose that

1. ε(t), t = 0, 1, . . . satisfy Condition 2 and have mean zero,
2. X(t) is uniformly bounded and s11 6= 0,
3.
∑
u |u|h(u) <∞,

4. W in Condition 4 is a uniform kernel.

Let Qb→ 0 as T →∞. Then

Eĥ(u) = h(u) +
∑

q 6=0

h(u+ qQ) +O(b) +O(T−1/2).

In particular, ĥ(u) is asymptotically unbiased. Furthermore, ĥ(u1), . . . , ĥ(uM ) are
asymptotically normal with mean h(u1), . . . , h(uM ) and covariance structure

cov(ĥ(u), ĥ(v)) =
2π
QbT

ΛT (u, v)
∫
W 2 +O

(
T−1

)
, u, v = 0,±1,±2, . . . ,

where

ΛT (u, v) =
1
Q

Q∑

q=0

exp
(
i
2π(u− v)q

Q

)
sεε(2πq/Q)/s11(2πq/Q).

Proof. The proof of Theorem 7.5 is tedious and very computational. We outline the
argument here. The proof starts by assuming the X series to be non-random. The
asymptotic normality then follows from the computation of the joint cumulants, it
is shown that cumulants of order greater than 2 of ĥ(u1), . . . , ĥ(uM ) tend to zero
as T → ∞. The desired result for the random X follows by invoking a standard
technique in nonparametric regression for handling ratio of two random variates.
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Mixed Models, Posterior Means and

Penalized Least-Squares

Yolanda Muñoz Maldonado1

Michigan Technological University

Abstract: This paper reviews the connections between estimators that derive
from three different modeling methodologies: Mixed-effects models, Bayesian
models and Penalized Least-squares. Extension of classical results on the equiv-
alence for smoothing spline estimators and best linear unbiased prediction
and/or posterior analysis of certain Gaussian signal-plus-noise models is ex-
amined in a more general setting. These connections allow for the application of
an efficient, linear time algorithm, to estimate parameters, compute random
effects predictions and evaluate likelihoods in a large class of model scenar-
ios. We also show that the methods of generalized cross-validation, restricted
maximum likelihood and unbiased risk prediction can be used to estimate the
variance components or adaptively select the smoothing parameters in any of
the three settings.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
2 Equivalence Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

3.1 Varying Coefficient Models . . . . . . . . . . . . . . . . . . . . . . . 224
3.2 Ridge Regression and Penalized Spline Regression . . . . . . . . . . 229
3.3 Mixed-Effects Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
A State-Space Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

1. Introduction

Mixed-effects model methodology, penalized least-squares and Bayesian random-
effects models are widely used statistical tools. However, due to the dissimilar na-
ture of the settings in which they are typically formulated, connections between
these three techniques as well as the fundamental reasons for the connections, have
often been overlooked. In this paper, we review some of the well known results
that connect smoothing spline estimators, Gaussian signal-plus-noise models and
best linear unbiased prediction of mixed-effects models and show that they are but
one aspect of a general framework that allows for “cross-platform” development in
mixed-effects models, using frequentist or Bayesian approaches, and/or penalized

1Department of Mathematical Sciences, Michigan Technological University, Houghton, MI
USA, email: ymunoz@mtu.edu
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least-squares (PLS) criteria.
The relationship between particular cases of frequentist and Bayesian mixed-

effects models and PLS has been exposed before. For example, Lindley and Smith
[29] proposed the use of prior information on the parameters of a fixed effects linear
model under the assumption of the parameters having exchangeable distributions.
In the early development of the Bayesian theory for smoothing splines, Wahba [43]
noticed the intimate connection between estimators resulting from spline smooth-
ing and a Gaussian model with diffuse initial conditions. Robinson [35] remarked
on applications of Best Linear Unbiased Predictors (BLUP’s) for estimation of
variance parameters, randomized block designs and their link to empirical Bayes
methods and Kriging. Speed [40] pointed out, in a comment to Robinson’s article,
that smoothing spline estimators were in fact BLUP’s of a certain mixed effects
model. In the PLS framework, it is well known that smoothing splines estimators
are a special case of penalized splines estimators (P-splines) [37]. Wahba [47] and
Cressie [7] discussed the links between splines and kriging estimates and Nychka
used the representation of smoothing splines as a type of ridge estimator to further
relate smoothing spline estimation and kriging [32].

More recently, researchers have been using the connection between smoothing
spline estimators and particular mixed-effects models to compute smoothing spline
estimators [see 4, 19, 48]. Ruppert et al. [36] mentioned the correspondence be-
tween penalized spline smoothers and prediction in the mixed-effects model and
remarked on the advantages of using existing mixed-effects model techniques and
software in a semi-parametric regression setting. Eubank et al. [11] took advantage
of the relationship between smoothing splines and the Gaussian model of [43] to
provide a general development that includes the efficient computation of estimators
in a varying coefficient model context.

Using connections that have been established for various special cases, we syn-
thesize them and present a formal result that details precisely when penalized least-
squares estimation, BLUP for a mixed-effects model and posterior mean analysis of
a mixed-effects model with diffuse priors on some of the random effects (hereafter
referred to as simply the Bayesian model) produce identical estimators. We then
describe how this can be exploited in many cases of interest to provide a computa-
tionally efficient algorithm for evaluation of estimators and likelihoods, computation
of predictions, and construction of Bayesian prediction intervals. The implemented
algorithm reduces the computational effort of calculating the aforementioned quan-
tities by two orders of magnitude over what would normally be the case for a direct
mixed-effects model approach. We also establish a result showing that the methods
of Generalized Cross-validation (GCV), Restricted Maximum Likelihood (REML)
or the equivalent technique of Generalized Maximum Likelihood (GML) and Unbi-
ased Risk Prediction (UBR) can be used in any of the three settings to adaptively
estimate the smoothing parameters or variance components.

The following three examples will be used throughout the paper to illustrate the
utility of our approach.

Example 1: Varying Coefficient Models. Varying coefficient models generalize
ordinary linear regression models by allowing for regression coefficients that change
dynamically as a function of independent variables. The simplest example of this are
the so-called time varying coefficient models where there is only one effect modifying
covariate. In that setting, we have response variables yij , i = 1, . . ., n, j = 1, . . ., ni,
that depend on some predictor variables x1ij , . . ., xKij through a relationship of the
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form

yij =
K∑

k=1

βk(tij)xkij + eij ,(1)

where the βk(·)’s are unknown coefficient functions of a covariate t and the eij
represent random error terms. Models like (1) were first introduced by [21] who
proposed obtaining estimators through minimization of the PLS criterion

∑n
i=1

∑ni

j=1

{
yij −

∑K
k=1 fk(tij)xkij(tij)

}2

+
∑K
k=1 λk

∫ 1

0
[f (r)
k (t)]2dt(2)

over functions f1, . . ., fK having r square integrable derivatives, and g(s)(t) being
the sthderivative of the function g. The parameters λk ≥ 0 control the smoothness
of the coefficient functions and the minimizers can be shown to be natural splines
of degree 2r − 1 with knots at the unique elements of the set {tij}.

Example 2: Ridge Regression. Consider the linear regression model

y = Xβ + e,(3)

where y is a n × 1 vector of responses, X is a known n × p matrix of predictor
variables of rank p, β is a p× 1 vector of unknown coefficients and e is a normally
distributed vector of errors with E(e) = 0 and E(eeT) = σ2

eI, with “T” denoting
the transpose of a matrix and I an identity matrix of suitable dimension. The
generalized ridge regression estimator of β is then given by β̂ = [XTX+K]−1XTy.
This estimator can be obtained by minimizing the PLS criterion

(y −Xa)T(y −Xa) + aTKa,(4)

over {a : a ∈ RI p}, with K a diagonal matrix having elements λi ≥ 0, for i =
1, . . ., p. A special instance of (4) is given by ordinary ridge regression in which case
the predictor variables are usually standardized and K has the form λI, for λ > 0.
Other variations of generalized ridge regression are the P-splines estimators of [9]
and of [36]. We will now describe the later approach in more detail.

Suppose that we have a collection of points on the plane, (ti, yi), i = 1, . . ., n,
and want to fit them using scatter-plot smoothing methodology. P-splines provide
one popular approach for accomplishing this that arise from using a spline basis to
construct the X matrix in (3). That is, for some integer m ≥ 0 and a fixed set of
knots ξ1 < ξ2 < · · ·< ξp, we take X = [x1, . . .,xm+p] with x1 a n-vector of all ones,
xj = [tj−1

1 , . . ., tj−1
n ]T, j = 2, . . .,m and xm+j = [(t1 − ξj)m−1

+ , . . ., (tn − ξj)m−1
+ ]T

, for j = 1, . . ., p with (x)r+ being xr for x ≥ 0 and zero otherwise. A P-spline
smoother is then found by minimizing (4), with the matrix K having the form

K =
[

0m×m 0m×p
0p×m λI

]
,(5)

with 0r×s being an r by s matrix of all zeros.

Example 3: Randomized Block Design. Linear mixed-effects models have been
applied for analysis of data arising from situations involving repeated measures and
experimental designs with factors that can be seen as a combination of fixed and
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random effects. Some types of randomized block designs fall in the last category,
for example, when the experimental units are randomly selected and each has re-
peated measurements. For this particular type of design, the experimental units
are assumed to be the factor (or blocking criterion), that makes them relatively
homogeneous with respect to a measured response. One way of modeling this type
of problems is

y = Xθ + b+ e,(6)

where X is the design matrix for the fixed-effects, θ is the parameter vector for
the fixed-effects and b is a random vector of blocking factors. This is not the only
model that can be used with this type of design, but it will serve the purpose of
this paper.

The remainder of the paper is organized as follows. In section 2 we present a result
that connects estimators/predictions that are obtained from mixed-effects models,
penalized least-squares estimation and Bayesian formulations. We also address the
issue of estimation of the variance components and smoothing parameters that
arise from their respective contexts. In this latter respect, we establish that GCV,
REML/GML and UBR can all be used to obtain the above mentioned estimators.
Section 3 illustrates the implementation of our main result using the three examples
mentioned in this section. Section 4 concludes with some comments about the use
of the theorems in section 2 and the employment of the Kalman filter algorithm.

2. Equivalence Theorem

To begin, we will give a detailed description of the three modeling scenarios that
are the focus of this section.
• Mixed-effects model : Consider first the linear mixed-effects model

y = Tθ + Ub+ e,(7)

where y is a n × 1 vector of responses and T and U are design matrices for the
fixed and random effects of dimensions n×m and n× q, respectively. Here, we take
θ to be a m × 1 vector of fixed effects and b to be a q × 1 normally distributed
random vector with zero mean and variance-covariance matrix Var(b) = σ2

bR. The
random effects b are assumed to be independent of the n × 1 vector of random
errors, e, which in turn, is assumed to be normally distributed with zero mean
and variance-covariance matrix σ2

eI. For this model, as well as for the Bayesian
model below, the parameters σ2

e and σ2
b are the so called variance components. It

is often convenient to reparameterized the variance components as λ = σ2
b/σ

2
e so

that Var(y) = σ2
e(λURUT + I). The value of Tθ + Ub can be predicted using its

BLUP.
• Bayesian Model: Similar to the previous case, in this setting we assume that

y = Tθ + Ub+ e,(8)

with T and U fixed matrices. However, we now also take θ to be random and model
it as being independent of b and e, with a zero mean, normal prior distribution
having variance-covariance matrix Var(θ) = νI. The vector of random effects, b,
is also assumed to be normally distributed with zero mean and Var(b) = σ2

bR.
Prediction of Tθ + Ub can be accomplished via the use of its posterior mean. In
the absence of an informative prior for θ a diffuse formulation can be employed
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wherein ν is allowed to diverge. Note: notice that this is not truly a Bayesian model
since there are no priors on the variance components. It is named Bayesian model
for the sake of identification.
• Penalized Least-Squares: In this case we have y = Tθ+Ub+e with θ and
b being non random and e is a vector of zero mean, normally distributed random
errors with variance-covariance matrix Var(e) = σ2

eI. The parameters are to be
estimated by minimizing the PLS criterion

PLS(a, c) = (y −Ta−Uc)T (y −Ta−Uc) + λcTR−1c,(9)

with respect to a and c. Here, R−1 is a penalty matrix and λ is the parameter that
controls how heavily we penalize the coefficients c.

Having these three scenarios in mind, we now state the following theorem.

Theorem 2.1. The Best Linear Unbiased Predictor (BLUP) of Tθ+ Ub in (7) is
given explicitly by

ŷ = Aλy,(10)

where

Aλ = {I−Q−1[I−T(TTQ−1T)−1TTQ−1]},(11)

and

Q = (λURUT + I).(12)

This result is numerically the same as the limiting value (as ν → ∞) of E[Tθ +
Ub|y] in (8) and the minimizer of (9).

Proof. To simplify the proof let us assume that the design matrices U and T, as
well as R, are all full rank matrices (we will later relax this assumption).

Under model (7), the first two moments of y are given by

E(y) = Tθ and Var(y) = σ2
bURUT + σ2

eI.

Using the distribution of y given b and the distribution of b, we can then find the
joint density of y and b and obtain the normal equations of [23]:

TTTθ + TTUb = TTy

UTTθ + (UTU + R−1
λ )b = UTy,

for Rλ = λR.
After some algebra and using the Sherman-Morrison-Woodbury formula in [24]

we have

Q−1 = I−U(UTU + Rλ)−1UT,(13)

θ̂ = (TTQ−1T)−1TTQ−1y

and

b̂ = (UTU + R−1
λ )−1UT[I−T(TTQ−1T)−1TTQ−1]y.

In this way, the predicted values of Tθ + Ub are given by

ŷ = {I−Q−1[I−T(TTQ−1T)−1TTQ−1]}y.(14)

imsart-coll ver. 2008/08/29 file: Munoz.tex date: March 25, 2009



222 Yolanda Muñoz Maldonado
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To show that minimization of the PLS criterion produces the same numerical
answer as the BLUP of (7), we differentiate PLS(a, c) with respect to a and c to
obtain normal equations which together with (13) give us the same answer as in
(14).

It remains to show that under the Bayesian model with diffuse prior,
limη→∞ E(Tθ + Ub|y) also agrees with (14). In this case, the joint distribution of
Tθ+Ub and y is found to be normal with zero mean vector and variance-covariance
matrix given by

(
νTTT + n−1σ2

bURUT νTTT + n−1σ2
bURUT

(νTTT + n−1σ2
bURUT)T νTTT + n−1σ2

bURUT + σ2
eI

)
.

Standard multivariate analysis results then produce

E(Tθ + Ub|y) = Cov(Tθ + Ub,y)[Var(y)]−1y

= (νTTT + n−1σ2
bURUT)

×(νTTT + n−1σ2
bURUT + σ2

eI)−1y.

Letting λ be as in (12), η = ν/σ2
e and recalling equation (12) we obtain

E(Tθ + Ub|y) = (ηTTT + URλUT)(ηTTT + Q)−1y.(15)

Applying the Sherman-Morrison-Woodbury formula [24] on (ηTTT + Q)−1 and
using a little algebra we get

(ηTTT + Q)−1 = Q−1 −
Q−1T(TTQ−1T)−1[η−1(TTQ−1T)−1 + I]−1TTQ−1.

For η sufficiently large, the eigenvalues of (η−1(TTQ−1T)−1 are all less than one.
So, applying a power series expansion on (ηTTT + Q)−1 [16], substituting this
expansion in (15), and with the aid of some straight forward calculus we have that
limη→∞E(Tθ + Ub|y) is exactly the same expression as in (14).

Now, let us go back to our assumption of U, T and R being full rank matrices.
This may not be always the case. For example, if we approach estimation from the
PLS criterion perspective, there are cases (such as spline smoothing), where R has
less than full rank. To deal with this instance, suppose that the matrix URUT is
not invertible. In this situation, the matrix Q = (λURUT +I) will still be invertible
and our only concern is that the matrix T is less than full rank. In that case, we
can employ conditional inverses [e.g., 18, pp. 31] and the theorem will still hold.

A result such as theorem 2.1 is important because, as pointed out by [4, 19, 48]
and [36], one can take advantage of existing methodology and software to facilitate
and enhance our analyses. The difference here is that theorem 2.1 is not restricted
to the smoothing spline case of [43]; the BLUP result by [40] and referenced by
[4, 19, 48]; or to the Bayesian mixed model of [29]. Instead we see that, quite
generally, methodology from any particular one of the three frameworks can be
potentially applied to obtain useful developments for the other two.

In each of the scenarios described by theorem 2.1, it will generally be necessary
to estimate the parameter λ. The following result is a generalization of theorem 5.6
in [12] that allows us to apply three standard methods to the problem of adaptively
selecting this parameter. The methods considered here are GCV, UBR and GML
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which respectively produce estimators of λ via minimization of

GCV(λ) =
n−1RSS(λ)

[n−1tr(I−Aλ)]2
,(16)

UBR(λ) = n−1RSS(λ) + 2n−1σ2
etr(Aλ),(17)

and

GML(λ) =
yT (I−Aλ)y

|I−Aλ|1/(n−m)
+

.(18)

Here, tr denotes the trace of a matrix, RSS(λ) = (y − ŷ)T (y − ŷ)and |I−Aλ|+ is
the product of the nonzero eigenvalues of I−Aλ.

We note in passing that GML is equivalent to the method of REMS that is a
popular approach to variance component estimation. [See, e.g. 40]. In terms of the
relationship between criteria (16)-(18) we can establish the following result.

Theorem 2.2. E[GCV(λ)], E[UBR(λ)] and E[REMS/GML(λ)] are all minimized
at λ = σ2

b/σ
2
e .

Proof. To establish theorem 2.2 first note that the arguments in [12, pp. 244–247]
can be easily modified to account for either the GCV or UBR part of the theorem.
The main difference is that here we are not working with diffuse priors. Thus, we
will concentrate on sketching the part of the proof that pertains to equation (18).

Let λo = σ2
b/σ

2
e and write I−Aλ = B(BTQB)−1BT, for a B such that BTB = I,

BBT = I−T(TTQ−1T)−1TTQ−1 and BTT = 0. Then,

BTQB = BT(nλURUT + I)B
= nλBTURUTB + I.

Define the matrix of eigenvalues for BTURUTB with corresponding matrix of
eigenvectors V as Λ = diag{d1, . . ., dn−m}. Then, we can write

BTQB = V(λΛ + I)VT.

Now, taking expectation with respect to e and b we can show that

E[REMS/GML(λ)] =
σ2
etr[(I−Aλ)] + λotr[(I−Aλ)(Q− I)]

[
∏n−m
i=1 (λdi + 1)−1/(n−m)]

,

=
σ2
e∏n−m

i=1 (λdi + 1)−1/(n−m)

n−m∑

i=1

(λodi + 1)
(λdi + 1)

.

Now, take the difference of the logarithms of the expectations E[REMS/GML(λ)]
and E[REMS/GML(λo)]. A sufficient condition for minimization of the REMS/GML
criterion at λo is then seen to be

log

[
1

n−m
n−m∑

i=1

(λodi + 1)
(λdi + 1)

]
− 1

(n−m)

n−m∑

i=1

log
[

(λodi + 1)
λdi + 1

]
≥ 0.

However, this is an immediate consequence of Jensen’s inequality.

Criteria (16)–(18) have long been used for the selection of smoothing or penalty
parameters. Golub et al. [17] proposed (16) as a method to choose the ridge re-
gression parameter in a standard regression model like (3) and Craven and Wahba
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[6] introduced GCV as a method for choosing the smoothing parameter in non-
parametric regression. Wahba [46], Kohn et al. [27] and Stein [41] compared the
performance of GCV and REML/GML for the smoothing spline case.

Unlike the methods of REML/GML in the PLS framework, GCV and UBR have
not been applied in the context of mixed-effects models. Theorem 2.2 suggests that
GCV may be another suitable method for estimation of variance components in this
context. The fact that the GCV estimator of the variance components shares the
REML/GML estimator attribute of minimizing the expectation of the risk, seems
to indicate that both estimators will have similar properties and behavior under the
mixed-effects model (as it has been shown for the PLS and the Bayesian models [see
27, 46] ). However, this needs to be confirmed by studying the distributional and
consistency properties of the GCV estimator of σ2

e and σ2
b under the mixed-effects

model and this is a topic for future research.

3. Examples

In this section we focus on the examples introduced in section 1 and exemplify
the advantages of using existing methodology for one particular framework (the
Bayesian model) to the other two. In particular, we will use a Kalman filter al-
gorithm to compute estimators and predictions that arise in the three scenarios
considered in theorem 2.1. Perhaps the most common application of the Kalman
filter has been in a Bayesian context [see 3, 28]. Specifically, Kohn and Ansley [25],
using Wahba’s Gaussian model (a particular case of our Bayesian model), reformu-
lated the model into a state-space representation and thereby obtained an efficient
O(n) algorithm for computing smoothing spline estimators. Theorem 2.1 allows us
to extend this approach to non spline smoothing situations and obtain an efficient,
Kalman filter based, computational algorithm provided that the random compo-
nents in theorem 2.2 admit a state-space representation. This algorithm also permits
the evaluation of likelihood functions, making it possible to obtain REMS/GML es-
timators for variance components or smoothing parameters.

Description of the Kalman filter is beyond the scope of this paper. Instead, we
will focus on establishing a state-space representation for the three examples and
refer the reader to [11, 13] and [14] for a more complete development. To accomplish
this, it suffices to give only a brief discussion concerning the form of a state-space
model.

Any response yi can be represented using a state-space model if the observation
at time i can be expressed as a function of the observation at time i − 1. More
formally, a state-space model is composed of a set of response equations

yi = hT(ti)x(ti) + ei,(19)

and a system of state equations

x(ti+1) = F(ti)x(ti) + u(ti).(20)

with ti ∈ [0, 1] and 0 = t0 ≤ t1 < · · · < tn. The yi are observed quantities and
the ei, u(ti), x(ti), are all unobservable with u(t0) . . .,u(tn−1), e1, . . ., en and the
initial state, x(t0), all being zero mean, uncorrelated normal random variables.
In general, the x(ti) and u(ti) may be vector valued with u(ti) having variance-
covariance matrix Ru(ti). For our purposes we will treat the vectors h(ti) and the
transition matrix F(ti) in (19)– (20) as being known.

We will proceed now to demonstrate the application of the equivalence theorem
in the context of our three examples.
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3.1. Varying Coefficient Models

To illustrate the varying coefficient case, we will examine the progesterone profiles
data (figure 1) of [4]. The data consists of metabolite progesterone profiles, measured
daily in urine over the course of a menstrual cycle in a group of 51 women.
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Fig 1. Observed progesterone measurements for subject 11 in the non-conceptive group. The plots
correspond to three of the four cycles for subject 11 and show the log progesterone concentration
versus day in the cycle. All cycles have missing observations. Days corresponding to the menses
were excluded.

The women in the study were divided into two groups: 29 in the non-conceptive
group and 22 in the conceptive group. Each woman contributed a different number
of cycles, ranging from 1 to 5 cycles and some of the cycles have missing values.

The goal of the analysis is to detect differences between the conceptive and non-
conceptive group profiles. To do this we will express the varying coefficient model (1)
with the formulation in (9), apply theorem 2.1 and find the equivalent formulation
(8) in the Bayesian framework in order to use the efficient Kalman filter algorithm
of [13].

For simplicity, assume that we have complete data and the same number of cycles
per woman (later we will relax these assumptions). Let the log progesterone level
of the cthcycle for the wthwoman at time ti be denoted by ywci and model this
response as

ywci = β1(ti)X1wci + β2(ti)X2wci + ewci

where i = 1, . . ., 24, and t1 = −8, t2 = −7, . . ., t24 = 15 are the days in a menstrual
cycle. The cycles c range from 1 to 5 and w = 1, . . ., 29 correspond to women in the
non-conceptive group and the rest belong to the conceptive group.

Assume that the βk(·)’s, k = 1, 2, are smooth functions of t. Usually, this trans-
lates into assuming that the functions belong to a Hilbert space of order m [see
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22]. To find the estimated profiles we minimize a particular PLS criterion, where
the penalty is applied to the integral of the square of the second derivative of the
βk(·)’s. The minimizers of β1(·), β2(·) are natural splines of order m, with m = 3,
that can be represented by a linear combinations of basis functions

m−1∑

q=0

θkqt
q
i +

24∑

r=1

bkrξr(ti),

with knots at each of the design points ti, and

ξr(ti) =
∫ min{tr,ti}

0

(ti − u)m−1(tr − u)m−1du

[(m− 1)!]2
.(21)

Equation (21) is one of the usual reproducing kernels of a Hilbert space of order m
[22].

Let ywc = [ywc(t1), . . ., ywc(t24)]T be the vector of responses for women w that
contains all the daily observations in the c cycle, and ξi = [ξ1(ti), ξ2(ti), . . ., ξ24(ti)]

T

and ti = [t0i , t
1
i , . . ., t

m−1
i ]T be the vectors of basis functions evaluated at the times

ti’s.
Denote the vector of coefficients for β1 and β2 as θ1 = [θ10, θ11, . . ., θ1,(m−1)]T,

θ2 = [θ20, θ21, . . ., θ2,(m−1)]T, b1 = [b10, b11, . . ., b1,24]T, b2 = [b21, b22, . . ., b2,24]T,
respectively. Construct t, ξ and X such that

t =




tT1
tT2
...
tT24


 , ξ =




ξT
1

ξT
2
...
ξT

24


 and X =




X1wc1 X2wc1

X1wc2 X2wc2

...
...

X1wc24 X2wc24


 .

Let Twc = t
⊗

X and Uwc = ξ
⊗

X, where A
⊗

B denotes the Kronecker product
of the matrices A and B and it is equal to aijB.

For each woman’s cycle we have the model Twcθ
? + Uwcb

? + eew, where θ? =
[θT

1 ,θ
T
2 ]T, b? = [bT

1 , b
T
2 ]T and ewc is the corresponding vector of errors. Denote

by y and e the vectors resulting from stacking the vectors ywc and ewc, (i.e.,
y = [yT

1,1,y
T
1,2, . . .,y

T
1,5,y

T
2,1, . . .,y

T
51,5]T), and let T = diag{Twc}w=1,51

c=1,5
and U =

diag{Uwc}w=1,51
c=1,5

. Then, we can construct the model Tθ+Ub+e, where θ = 1
⊗
θ?,

b = 1
⊗
b?, and minimize criteria (9), where R−1 = U.

By theorem 2.1, this is equivalent to find lim ν→∞E[Tθ + Ub|y], where θ, b
and e are independent of each other and normally distributed with zero mean and
variance-covariance matrices νI, σ2

bU−1, and σ2
eI, respectively. In this case, the

smoothing parameter λ in the PLS model can be found using the variance compo-
nents, σ2

e and σ2
b since nλ = σ2

b/σ
2
e , where n is the total number of observations in

the data.
The equivalent Bayesian representation of the varying coefficient model will allow

us to make use of the Bayesian theory and apply it to our PLS setting. Specifically,
we can follow [13] and transform the Bayesian model into a state-space model, as
they indicate, and apply their efficient algorithm to compute the varying coefficients
and respective confidence bands. Their approach also shows how to reformulate the
matrices in the Bayesian model so the unbalanced design does not represent a prob-
lem in the computation of the estimators. For details on how to find the state-space
model form, or on how to apply this efficient algorithm, we refer the readers to the
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appendix and to the above mentioned authors, respectively.
To see what are the advantages of using this equivalence representation of the

PLS, let us first explore the extent that the Kalman filter can speed up computa-
tions. To investigate this issue we carried out a run time comparison between our
Kalman filter approach, the “standard way” of estimation assuming a mixed-effects
model approach (both in SAS), and, only as a reference, we provide the time used in
the method developed by Brumback and Rice [4]. We need to point out that these
are the reported times in their 1998 paper and that there has been great improve-
ment in computational speed since the publication of this paper. Table 1 shows the
required times for computing the estimated conceptive and non-conceptive func-
tions (see figure 2).

Table 1
Run time comparisons between the Kalman filter algorithm of [11] implemented in SAS, SAS
proc mixed and Brumback and Rice’s (1998) approach. Both Kalman filter and Brumback and
Rice’s approach include the time it took to calculate the smoothing parameter. The proc mixed

time does not include this computation.

Method Real Time
Kalman Filter 14.60 secs.
PROC MIXED 4 hrs. 12 mins. 15 secs.
Brumback and Rice 1 hr. 50 mins.
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Fig 2. Smooth estimates for non conceptive and conceptive mean groups with respective 95%
pointwise confidence intervals. The corresponding smoothing parameters were computed using
the GML method implemented through a Kalman filter algorithm.

The first time in table 1 corresponds to the time employed by the Kalman filter
algorithm of [11] implemented in SAS and using a computer with a 3.2GHz pro-
cessor and 1G RAM. This algorithm used 2004 observations (missing values were
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omitted) and calculated the estimated coefficient functions and corresponding 95%
confidence intervals. The second time is the result of using a mixed-effects model
representation and taking advantage of SAS proc mixed (the same equipment was
used). The last time is the one reported by [4]. They implemented an eigenvalue-
eigenvector decomposition on a mixed-effects model representation of the profiles,
separately for each group, and combined the times for both groups and the esti-
mation of the variance components. We calculated the smoothing parameters via
REML/GML using the Kalman filter algorithm and it took approximately 10.5 sec-
onds in SAS (this time is included in the computation of the Kalman filter in table
1). These parameters were used in both the SAS and Kalman filter calculation of
the varying coefficient functions (we didn’t want to calculate the smoothing param-
eters with SAS Proc Mixed given that it already took 4 hrs. to calculate the profiles
without estimating the variance components). The reason why SAS takes so long
to estimate the functions is due to the complex covariance structure of the model
and the number of observations. The convenient SAS built-in covariance structures
were not an option [see comment by 4], and the inversion of a general n×n matrix
requires O(n3) operations versus the O(n) used by the Kalman filter.

Another advantage of using the Bayesian interpretation in our PLS model is
that the Kalman filter allows us to easily obtain confidence intervals as well as
point estimators. In this respect, we use the relationship between PLS and the
Bayesian model to provide Bayesian 100(1 − α)% confidence (or prediction) in-
tervals which parallel those developed by [44] and [31]. Specifically, we “estimate”
the ithcomponent of βk(ti) via the interval βk(ti) ± z1−α/2

√
σ̂2
e × aii, where σ̂2

e =
[(y−Aλy)T (y−Aλy)]/(n−m), aii is the ithdiagonal element of the corresponding
hat matrix Aλ for βk and z1−α/2 is the 100(1− α/2) standard normal percentile.

Wahba’s “Bayesian Confidence Intervals” have been often used in the nonpara-
metric community. Wahba [44] showed that the average of the coverage probability
across points of these pointwise intervals is very close to nominal level for large
n. She also commented that even if the confidence intervals are derived from a
Bayesian perspective, they perform well in the frequentist realm. Nychka [32] offers
an excellent discussion on why this is true.

In their paper, Brumback and Rice [4] utilized a hierarchical bootstrap method
to assess the variability of the fitted functions instead of using the variance compo-
nents estimators (it is well know that these estimators often underestimate the true
parameters). For each bootstrapped sample 1.5 hours was required to obtain the
estimated sample profiles (as reported by [4]). As a result, a partially parametric
version of the method was implemented [see 4, for more details]). They com-
puted 35 bootstrap samples and this took approximately 45 mins. In contrast, the
confidence intervals computed in this paper for the progesterone profiles were ob-
tained with the same computational effort involved in the estimation of the profiles.

Our estimated function profiles seem to agree with the ones obtained by Brum-
back and Rice. In addition, the “confidence” intervals also allow us to see that, on
average, the production of progesterone in the conceptive group drops significantly
from day 4 until around day 8 (when ovulation occurs) as compared to the hormone
production of the non conceptive group. This result differs from the findings by [4].
Their bootstrap sample suggested that the decrease in progesterone for the con-
ceptive group was not significant. The discrepancy between our findings and those
of Brumback and Rice may be due to the small bootstrap sample they employed
in their analysis or with our interpretation of the confidence intervals. Nychka [32]
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pointed out that these intervals may not be reliable at specific points, even more if
those points are part of a sharp peak or deep valley in the function. However, he
also mentioned that it provides “a reasonable measure of the spline estimate’s ac-
curacy provided that the point for evaluation is chosen independently of the shape”
of the function. It is known that the women are more fertile around day 3 to day 9,
making it an interval targeted for studying before the start of the analysis. Also, we
do not consider that the bump that forms in the interval of interest is that sharp.
Hence, we believe that the confidence intervals provide reasonable evidence that
the profiles are different.

3.2. Ridge Regression and Penalized Spline Regression

To exemplify the use of theorem 2.1 in the ridge regression setting, we have selected
a data set that is freely distributed by StatLib at http://lib.stat.cmu.edu. The data
set consists of 1150 heights measured at 1 micron intervals along the drum of a roller
(i.e. parallel to the axis of the roller). The units of height are not given and the
zero reference height is arbitrary.

To fit this data we used a model of the form (3) with X = [T,U] and corre-
sponding vector of coefficients β = [θT, bT]T, where

T =




1 t1
1 t2
...

...
1 t1150


 and U =




(t1 − ξ1)+ · · · (t1 − ξk)+

(t2 − ξ1)+ · · · (t2 − ξk)+

... · · ·
...

(t1150 − ξ1)+ · · · (t1150 − ξk)+


 .(22)

The generalized ridge regression estimator of β is then obtained by minimizing the
PLS criterion (4), with K as in (5) and m = 2.

Applying the results of theorem 2.1 we can write a parallel mixed-effects model
representation for this ridge regression problem. This particular framework was con-
sidered by [36] who describe in section 4.9 of their book how to represent p-splines
as BLUP’s and illustrated how to use available software packages, like SAS proc
mixed or the S-PLUS function lme, to obtain a fitted curve for the data. In view of
the equivalence theorem, an alternative approach would be to use the connection
between PLS and the Bayesian model so the Kalman filter can be implemented
for purposes of computing estimators and “confidence” intervals. Another compre-
hensive description of the use of P-splines in the semi-parametric regression setting
using Bayesian techniques is given in [5]. In this paper, we will use the Bayesian
connection.

Assume that the vectors θ, b and e are independently normally distributed with
zero mean and respective variance-covariance matrices νI, σ2

bI and σ2
eI. Then, by

the equivalence theorem, the minimizer of (4) is the same as the limit, when ν is
allowed to go to infinity, of the posterior mean of Tθ + Ub|y.

Again, this Bayesian model representation of the ridge regression example will
permit the use of the Kalman filter algorithm for the computation of the estimated
function and its respective ”confidence intervals”. For the explicit form of the state-
space model see the appendix.

For this particular example, we considered two different model versions, one us-
ing k = 150 knots and the other with k = 1150 knots. This because we wanted to
contrast the computational performance of the P-splines versus the computational
effort required using smoothing splines and the Kalman filter. We should remark
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here that, when k = 1150, basically we have a smoothing spline estimator which
basis functions are the polynomials and the truncated power functions (ti − ξk)+,
for i = 1, . . ., 1150.
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Fig 3. Figure (a) shows the P-spline estimator with 150 knots for the roller height with its
respective 95% confidence bands. The corresponding figure for the P-spline estimator with 1150
knots looks exactly the same and has been omitted. Figure (b) shows the comparison between the
p-spline estimator with 150 knots and the P-spline with 1150 knots. There is no visual difference
and both procedures yielded an estimated error variance of 0.36.

Figure 3 shows the smooth estimated curve for the roller height and corre-
sponding 95% “confidence intervals”. The smoothing parameters were, respectively,
λ150 = 0.043 and λ1150 = 0.095. They were selected via GCV and as we can see the
GCV methods adjusts the smoothing parameters according to the number of knots
used.

One of the main arguments in favor of using P-splines in lieu of smoothing splines
is that, by reducing the number of knots involved in the model, we increase the com-
putational efficiency involved in calculating the spline estimator. This is true when
using brute force methods, i.e., direct inversion of the matrix (12). However, when
using the proposed Kalman filter algorithm, the computational advantage of the
P-splines over the smoothing splines disappear as we can see in table 2.

Table 2
Run time comparisons between a p-splines estimator with 150 knots, a P-spline estimator with

1150 knots and a smoothing spline estimator (technically 1150 knots but using as basis
functions the polynomials and equation (21)). Both estimators were computed using code in R

and the time does not include computation of the smoothing parameter.

Knots Real Time
P-spline 150 48.34 secs.
P-spline 1150 54.55 secs.
Smoothing Spline 48.26 secs.

3.3. Mixed-Effects Model

In this last example, we want to illustrate the application of the equivalence theo-
rem in the mixed-effects model setting. By finding the equivalent Bayesian model
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of a mixed-effects model representation we will demonstrate the use of Kalman
filtering for estimating parameters in a setting that it has seldom being used and
that it can benefit from the reduced computational burden of estimating parame-
ters and variance components. It is true that, if we have a “reasonable” number of
observations and a specific covariance structure, like the ones provided by existing
software, it will be advisable to use these procedures in lieu of the Kalman filter.
However, there are occasions where the number of observations is really large. Then
we can take advantage of the computational efficiency of the Kalman filter.

Our example deals with a randomized block design, where the data consists of
37 patients, which represent the random blocks, and a set of consecutive Hamilton
depression scores measured over the course of 6 weeks (see figure 4). The data set is
part of a study conducted by [34] and it is available at http://tigger.uic.edu/ hedeker/.

We model the data as

yij = β0 + β1week + bi + eij ,

where the yij ’s are the depression scores, for i = 1, . . ., 37, β0 and β1 are fixed
parameters and week = 0, 1 . . ., 5, is the week number where the score was mea-
sured. The random effects due to each patient are denoted by the bi’s and they are
independent of the errors eij ’s which are generated by an autoregressive process
of order 1, i.e., eij = φei,j−1 + aj(ti), with φ a constant and aj(ti) independent,
identically distributed zero mean errors with variance σ2

e .
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Fig 4. (a) Hamilton depression scores for 37 patients measured over the period of 6 weeks. (b)
Estimated regression line, y = 24.41− 2.36week, with respective 95% confidence bands.

Let y be the vector of depression scores such that y = [yT
1 , . . .,y

T
37]T, for yi =

[yi0, yi1, . . ., yi5]T. Denote by 1n, the vector of all ones of dimension n × 1 and
week = [0, 1, . . ., 5]T. In matrix form our model becomes

y = Tθ + b+ e,

with θ = [β0, β1]T, T = [137

⊗
15,137

⊗
week], and b = 15

⊗
[b1, b2, . . ., b37]T and

e = [eT
1 , e

T
2 , . . ., e

T
37]T, for ei = [ei0, ei1, . . ., ei5]T. Here, we model the b as normally
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distributed with zero mean and variance-covariance matrix R = {ξr(t1)} r=1,5
i=1,5

and

W =




σ2
e

1−φ2
φ

1−φ2
φ2

1−φ2 . . . φn

1−φ2

φ
1−φ2

σ2
e

1−φ2
φ

1−φ2 . . . φn−1

1−φ2

... . . .
. . . . . .

...
φn

1−φ2
φn−1

1−φ2 . . . φ
1−φ2

σ2
e

1−φ2



,

where W is the variance-covariance matrix of the AR(1) errors.
To find the corresponding Bayesian model, let b and e keep their distributions

and assume that θ is normally distributed with zero mean and variance-covariance
matrix νI. Once in the Bayesian form, we check that our observations Yij can be
represented using the state-space equations (19-20). The equivalence theorem hold
regardless of the state-space structure but, if we have that structure, then we can
apply the efficient Kalman filter algorithm of [13] and estimate all our parameters
with linear computational efficiency.

Figure 4 shows the estimated regression line for the Hamilton depression scores
over the 6 week period. The variance components for this example are estimated via
REML/GML and are φ̂ = 0.97, σ̂2

e = 1.214 and σ̂2
b = 0.00132. The corresponding

estimated values for the regression coefficients are θ̂0 = 24.41 and θ̂1 = −2.36.

4. Summary

In this paper, we have reviewed known results concerning the numerical equivalence
of 1) a smoothing spline estimator and a particular mixed-effects model and 2) a
smoothing spline estimator and the posterior mean of Wahba’s Gaussian model
and focus on the more general framework of frequentist and Bayesian mixed-effects
models and penalized least-squares estimation as seen in Theorem 2.1. This result
broadens the number of methodological resources available for computing BLUPs,
posterior means, likelihoods and minimizers of penalized least squares criteria and
facilitates the use of existing methodological tools, as exemplified by theorem 2.2
and our examples.

The link between the Bayesian mixed-effects model and the two other model
settings allowed us to obtain Bayesian “confidence” intervals for the profile groups
(instead of the computationally demanding bootstrap method of Brumback and
Rice) and facilitated the analysis of the profile differences during the fertile days.
Example 2 showed us that the Kalman filter implementation is not restricted to
Wahba’s Bayesian model. More generally, the idea carries over to settings involving
p-splines, Kernel estimators, differences, etc. Lastly, this link allows for the imple-
mentation of a computationally efficient Kalman filter algorithm in many cases of
interest. Kalman filter algorithms have been used to compute smoothing splines
type estimators [19, 25, 26, 48]. But, they have been sparsely used in mixed-effects
model settings. To this author knowledge, only [38] and, more recently, [30] have ap-
plied the Kalman filter to mixed-effects models. In the mixed-effects framework, the
techniques employed for the analysis of large data sets require the use of computer
intensive methods like the EM or MCMC algorithms [1, 39], conjugate gradient iter-
ative methods [42], or the use of high performance computing environments. Some
of the methods mentioned in these references assume that observations are gener-
ated by Brownian motion or ARMA processes and, whenever we have this type of
processes, we have a state-space structure that can be exploited, as demonstrated
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in our examples, to reduce the computational burden. Observations generated by
longitudinal analysis (as in example 3), repeated measurements or any process that
depends on an ordering variable can also frequently be assumed to have a state-
space representation and can, as a result, benefit from the computational efficiency
of the Kalman filter.

Appendix A: State-Space Forms

In this section we will explicitly describe the state-space forms used for the appli-
cation of the Kalman filter in each of our examples. Since the form of the errors
u(ti) in equation (20) is assumed to be the same for the varying-coefficient case
and the mixed-effects model, we will show the derivation for the varying coefficient
case and detail the small changes needed for the mixed-effects case. We will leave
for the last the ridge regression example.

To employ the Kalman filter for computation of the varying coefficient example
we need to show that the varying coefficients have a state-space representation.
That is, we need to be able to write equation (1) using equations (19)– (20). Since
the βk(·) are assumed to be smooth functions of t, we model them as

βk(ti) =
m−1∑

q=0

θkqt
q + σ2

bZk(ti),(A.1)

for k = 1, 2 and m = 2, where (without loss of generality) we can take t in [0, 1]
and

Zk(t) =
∫ 1

0

(t− u)m−1
+

(m− 1)!
dWk(u),

with Wk(·) standard Wiener processes. To simplify matters, first assume that
βk(ti) = σ2

bZk(ti). Then, βk(ti+1) can be written as σ2
b times

∫ ti

0

(ti+1 − s)m−1
+

(m− 1)!
dWk(s) +

∫ ti+1

ti

(ti+1 − s)m−1
+

(m− 1)!
dWk(s).

Taking

uk(ti) =
∫ ti+1

ti

(ti+1 − u)m−1
+

(m− 1)!
dWk(u),

for ti < tj , the covariance between uk(ti) and uk(tj) is found to be equal to

∫ ti

0

(ti − u)m−1(tj − u)m−1

[(m− 1)!]2
du.

For the remaining integral, add and subtract ti inside (ti+1 − u)m−1 and apply the
Binomial theorem. Upon doing this, a state-space representation results with F(ti)
equal to

F(ti) =




1 (ti+1 − ti) (ti+1−ti)2
2! . . . (ti+1−ti)m−1

(m−1)!

0 1 (ti+1 − ti) . . . (ti+1−ti)m−2

(m−2)!

...
...

...
. . .

...
0 . . . 1



,(A.2)
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Zk(ti) = [Zk(ti), Z
(1)
k (ti), . . ., Z

(m−1)
k (ti)]T , uk(ti) = [uk(ti), u

(1)
k (ti), . . ., u

(m−1)
k (ti)]T

and Zk(ti+1) = F(ti)Zk(ti) + uk(ti).
Now, rearranging the observations with respect to the time ti define

yT
iw = [yiw1, . . ., yiwcw ]T

with yT
iw the responses for woman w at time ti observed at cycles 1, . . ., cw, with

corresponding vector of random errors eiw. Let x(ti) = [Z1(ti),Z2(ti)]T , u(ti) =
[u1(ti),u2(ti)]T and Xkwi = [Xkw1i, . . ., Xkwcwi]

T . Then, taking

h(ti) = [XT
1wi,0, . . .,0,X

T
2wi,0, . . .,0]T ,

we arrive at the state-space model

yiw = h(ti)x(ti) + eiw,

x(ti+1) = F?(ti)x(ti) + u(ti),

where F?(ti) is the block diagonal matrix of size 2m × 2m with diagonal blocks
F(ti), i = 1, . . ., n.

Application of the standard Kalman filter to the vector of observations yiw will
yield coefficient functions estimates that disregard the polynomial term in (A.1).
To account for that, we must employ the diffuse Kalman filter as in [13]. This
entails a slight modification of our approach wherein the Kalman filter is applied
to the vector of observations yiw and each of the vectors 1n, t, t2 . . ., t(m−1), where
tr = [tr1, t

r
2, . . ., t

r
n]T [see 11, for a detailed derivation].

For our mixed-effects example we need to show that e can be represented in a
state-space form and stack the respective state vectors, errors and matrices. We will
proceed as follows: since the errors e(ti) are generated by an AR(1) process, they
can be written as e(ti+1) = φe(ti) + aj(ti), with φ a non random coefficient. This
entails that the transition matrix F?(ti) = diag{F(ti), φ}, with F(ti) as in (A.2)
and h(ti) = [1, 0, 1]. Take the state vector, x(ti), to be equal to [Zk(ti)T, e(ti)]T,
u(ti) = [uk(ti)T, aj(ti)]T with m = 2, where Zk(ti) and uk(ti) are as in the varying
coefficient case. Specific details about the form of the state vector and the vector
u(ti) of the state equation (20), as well as a more general form for an ARMA model,
can be found in [14].

Lastly, the state-space representation for the ridge regression example is found by
taking the state vector to be x(ti) = [x(ti), x(1)(ti), . . ., x(m−1)(ti)]T , with x(ti) =∑j
k=1 βk(ti− ξk)m−1 for ti ∈ [ξj , ξj+1) (using the definition of the truncated power

function), and x(r)(ti) the rthderivative of x(ti), r = 1, . . ., (m− 1). Then,

x(ti+1) = F(ti)x(ti) + u(ti),

with F(ti) as in (A.2) and u(ti) = [u(ti), u(1)(ti), . . ., u(m−1)(ti)]T, where

u(ti) =
{

0 if ti+1 ∈ [ξj , ξj+1)
βj+1(ti+1 − ξj+1)m−1 if ti+1 ∈ [ξj+1, ξj+2) .

To complete the state-space formulation, take the vector h(ti) to have dimension
m× 1 with one in the first position and the rest of its elements equal to zero.
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From Charged Polymers to Random Walk

in Random Scenery
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University of Tennessee and University of Utah

Abstract: We prove that two seemingly-different models of random walk in
random environment are generically quite close to one another. One model
comes from statistical physics, and describes the behavior of a randomly-
charged random polymer. The other model comes from probability theory, and
was originally designed to describe a large family of asymptotically self-similar
processes that have stationary increments.
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1. Introduction and the Main Results

The principal goal of this article is to show that two apparently-disparate models—
one from statistical physics of disorder media (Kantor and Kardar (1991), Derrida
et al (1992), Derrida and Higgs (1994)) and one from probability theory (Kesten
and Spitzer (1979), Bolthausen (1989))—are very close to one another.

In order to describe the model from statistical physics, let us suppose that q :=
{qi}∞i=1 is a collection of i.i.d. mean-zero random variables with finite variance
σ2 > 0. For technical reasons, we assume here and throughout that

(1.1) µ6 := E(q6
1) <∞.

In addition, we let S := {Si}∞i=0 denote a random walk on Zd with S0 = 0 that
is independent from the collection q. We also rule out the trivial case that S1 has
only one possible value.

The object of interest to us is the random quantity

(1.2) Hn :=
∑∑

1≤i<j≤n
qiqj1{Si=Sj}.
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In statistical physics, Hn denotes a random Hamiltonian of spin-glass type that is
used to build Gibbsian polymer measures. The qi’s are random charges, and each
realization of S corresponds to a possible polymer path; see the paper by Kantor and
Kardar (1991), its subsequent variations by Derrida et al (1992, 1994) and Wittmer
et al (1993), and its predecessos by Garel and Orland (1988) and Obukhov (1986).
The resulting Gibbs measure then corresponds to a model for “random walk in
random environment.” Although we do not consider continuous processes here, the
continuum-limit analogue of Hn has also been studied in the literature (Buffet and
Pulé (1997), Mart̀ınez and Petritis (1996)).

Kesten and Spitzer (1979) introduced a different model for “random walk in
random environment,” which they call random walk in random scenery.1 We can
describe that model as follows: Let Z := {Z(x)}x∈Zd denote a collection of i.i.d.
random variables, with the same common distribution as q1, and independent of S.
Define

(1.3) Wn :=
n∑

i=1

Z(Si).

The process W := {Wn}∞n=0 is called random walk in random scenery, and can be
thought of as follows: We fix a realization of the d-dimensional random field Z—the
“scenery”—and then run an independent walk S on Zd. At time j, the walk is at
Sj ; we sample the scenery at that point. This yields Z(Sj), which is then used as
the increment of the process W at time j.

Our goal is to make precise the assertion that if n is large, then

(1.4) Hn ≈ γ1/2 ·Wn in distribution,

where

(1.5) γ :=

{
1 if S is recurrent,∑∞
k=1 P{Sk = 0} if S is transient.

Our derivation is based on a classification of recurrence vs. transience for random
walks that appears to be new. This classification [Theorem 2.4] might be of inde-
pendent interest.

We can better understand (1.4) by considering separately the cases that S is
transient versus recurrent. The former case is simpler to describe, and appears
next.

Theorem 1.1. If S is transient, then

(1.6)
Wn

n1/2

D→ N(0 , σ2) and
Hn

n1/2

D→ N(0 , γσ2).

Kesten and Spitzer (1979) proved the assertion about Wn under more restrictive
conditions on S. Similarly, Chen (2008) proved the statement about Hn under more
hypotheses.

Before we can describe the remaining [and more interesting] recurrent case, we
define

(1.7) an :=

(
n

n∑

k=0

P{Sk = 0}
)1/2

.

1Kesten and Spitzer ascribe the terminology to Paul Shields.
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It is well known (Polya (1921), Chung and Fuchs (1951)) that S is recurrent if and
only if an/n1/2 →∞ as n→∞.

Theorem 1.2. If S is recurrent, then for all bounded continuous functions f :
Rd → R,

(1.8) E
[
f

(
Wn

an

)]
= E

[
f

(
Hn

an

)]
+ o(1),

where o(1) converges to zero as n → ∞. Moreover, both {Wn/an}n≥1 and
{Hn/an}n≥1 are tight.

We demonstrate Theorems 1.1 and 1.2 by using a variant of the replacement
method of Liapounov (1900) [pp. 362–364]; this method was rediscovered later
by Lindeberg (1922), who used it to prove his famous central limit theorem for
triangular arrays of random variables.

It can be proved that when S is in the domain of attraction of a stable law,
Wn/an converges in distribution to an explicit law (Kesten and Spitzer (1979),
Bolthausen (1989)). Consequently, Hn/an converges in distribution to the same
law in that case. This fact was proved earlier by Chen (2008) under further [mild]
conditions on S and q1.

We conclude the introduction by describing the growth of an under natural
conditions on S.

Remark 1.3. Suppose S is strongly aperiodic, mean zero, and finite second mo-
ments, with a nonsingular covariance matrix. Then, S is transient iff d ≥ 3, and by
the local central limit theorem, as n→∞,

(1.9)
n∑

k=1

P{Sk = 0} ∼ const×
{
n1/2 if d = 1,
log n if d = 2.

See, for example (Spitzer (1976) [P9 on p. 75]). Consequently,

(1.10) an ∼ const×
{
n3/4 if d = 1,
(n log n)1/2 if d = 2.

This agrees with the normalization of Kesten and Spitzer (1979) when d = 1, and
Bolthausen (1989) when d = 2.

2. Preliminary Estimates

Consider the local times of S defined by

(2.1) Lxn :=
n∑

i=1

1{Si=x}.

A little thought shows that the random walk in random scenery can be represented
compactly as

(2.2) Wn =
∑

x∈Zd

Z(x)Lxn.
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There is also a nice way to write the random Hamiltonian Hn in local-time terms.
Consider the “level sets,”

(2.3) Lxn := {i ∈ {1 , . . . , n} : Si = x} .

It is manifest that if j ∈ {2 , . . . , n}, then Lxj > Lxj−1 if and only if j ∈ Lxn. Thus,
we can write

Hn =
1
2


∑

x∈Zd

∣∣∣∣∣
n∑

i=1

qi1{Si=x}

∣∣∣∣∣

2

−
n∑

i=1

q2
i




=
∑

x∈Zd

hxn,

(2.4)

where

(2.5) hxn :=
1
2




∣∣∣∣∣∣
∑

i∈Lx
n

qi

∣∣∣∣∣∣

2

−
∑

i∈Lx
n

q2
i


 .

We denote by P̂ the conditional measure, given the entire process S; Ê denotes the
corresponding expectation operator. The following is borrowed from Chen (2008)
[Lemma 2.1].

Lemma 2.1. Choose and fix some integer n ≥ 1. Then, {hxn}x∈Zd is a collection
of independent random variables under P̂, and

(2.6) Êhxn = 0 and Ê
(
|hxn|2

)
=
σ2

2
Lxn (Lxn − 1) P-a.s.

Moreover, there exists a nonrandom positive and finite constant C = C(σ) such
that for all n ≥ 1 and x ∈ Zd,

(2.7) Ê
(
|hxn|3

)
≤ Cµ6 |Lxn (Lxn − 1)|3/2 P-a.s.

Next we develop some local-time computations.

Lemma 2.2. For all n ≥ 1,

(2.8)
∑

x∈Zd

ELxn = n and
∑

x∈Zd

E
(
|Lxn|2

)
= n+ 2

n−1∑

k=1

(n− k)P{Sk = 0}.

Moreover, for all integers k ≥ 1,

(2.9)
∑

x∈Zd

E
(
|Lxn|k

)
≤ k!n

∣∣∣∣∣∣

n∑

j=0

P{Sj = 0}

∣∣∣∣∣∣

k−1

.

Proof. Since ELxn =
∑n
j=1 P{Sj = x} and

∑
x∈Zd P{Sj = x} = 1, we have∑

x ELxn = n. For the second-moment formula we write

E
(
|Lxn|2

)
=
∑

1≤i≤n
P{Si = x}+ 2

∑∑

1≤i<j≤n
P{Si = Sj = x}

=
∑

1≤i≤n
P{Si = x}+ 2

∑∑

1≤i<j≤n
P{Si = x}P{Sj−i = 0}.

(2.10)
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We can sum this expression over all x ∈ Zd to find that

(2.11)
∑

x∈Zd

E
(
|Lxn|2

)
= n+ 2

∑∑

1≤i<j≤n
P{Sj−i = 0}.

This readily implies the second-moment formula. Similarly, we write

E
(
|Lxn|k

)

≤ k!
∑
· · ·
∑

1≤i1≤···≤ik≤n
P{Si1 = · · · = Sik = x}

= k!
∑
· · ·
∑

1≤i1≤···≤ik≤n
P{Si1 = x}P{Si2−i1 = 0} · · ·P{Sik−ik−1 = 0}

≤ k!
n∑

i=1

P{Si = x} ·

∣∣∣∣∣∣

n∑

j=1

P{Sj = 0}

∣∣∣∣∣∣

k−1

.

(2.12)

Add over all x ∈ Zd to finish.

Our next lemma provides the first step in a classification of recurrence [versus
transience] for random walks.

Lemma 2.3. It is always the case that

(2.13) lim
n→∞

1
n

∑

x∈Zd

E
(
|Lxn|2

)
= 1 + 2

∞∑

k=1

P{Sk = 0}.

Proof. Thanks to Lemma 2.2, for all n ≥ 1,

(2.14)
1
n

∑

x∈Zd

E
(
|Lxn|2

)
= 1 + 2

n−1∑

k=1

(
1− k

n

)
P{Sk = 0}.

If S is transient, then the monotone convergence theorem ensures that

(2.15) lim
n→∞

1
n

∑

x∈Zd

E
(
|Lxn|2

)
= 1 + 2

∞∑

k=1

P{Sk = 0}.

This proves the lemma in the transient case.
When S is recurrent, we note that (2.14) readily implies that for all integers

m ≥ 2,

lim inf
n→∞

1
n

∑

x∈Zd

E
(
|Lxn|2

)
≥ 1 + 2

m−1∑

k=1

(
1− k

m

)
P{Sk = 0}

≥ 1 +
∑

1≤k≤m/2
P{Sk = 0}.

(2.16)

Let m ↑ ∞ to deduce the lemma.

Next we “remove the expectation” from the statement of Lemma 2.3.
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Theorem 2.4. As n→∞,

(2.17)
1
n

∑

x∈Zd

(Lxn)2 → 1 + 2
∞∑

k=1

P{Sk = 0} in probability.

Remark 2.5. The quantity In :=
∑
x∈Zd(Lxn)2 is the socalled self-intersection

local time of the walk S. This terminology stems from the following elementary
calculation: For all integers n ≥ 1,

(2.18) In =
∑∑

1≤i,j≤n
1{Sj=Si}.

Consequently, Theorem 2.4 implies that a random walk S on Zd is recurrent if and
only if its self-intersection local time satisfies In/n→∞ in probability.

Remark 2.6. Nadine Guillotin–Plantard has kindly pointed out to us that the
mode of convergence in Theorem 2.4 can be strengthened to almost-sure conver-
gence. This requires a direct subadditivity argument (Guillotin–Plantard (2004)).
It follows also from the estimates that follow, together with a classical blocking
argument, which we skip.

Proof. First we study the case that {Si}∞i=0 is transient.
Define

(2.19) Qn :=
∑∑

1≤i<j≤n
1{Si=Sj}.

Then it is not too difficult to see that

(2.20)
∑

x∈Zd

(Lxn)2 = 2Qn + n for all n ≥ 1.

This follows immediately from (2.18), for example. Therefore, it suffices to prove
that, under the assumption of transience,

(2.21)
Qk
k
→

∞∑

j=1

P{Sj = 0} in probability as k →∞.

Lemma 2.3 and (2.20) together imply that

(2.22) lim
k→∞

EQk
k

=
∞∑

j=1

P{Sj = 0}.

Hence, it suffices to prove that VarQn = o(n2) as n → ∞. In some cases, this
can be done by making an explicit [though hard] estimate for VarQn; see, for
instance, (Chen (2008)[Lemma 5.1]), and also the technique employed in the proof
of Lemma 2.4 of Bolthausen (1989). Here, we opt for a more general approach that
is simpler, though it is a little more circuitous. Namely, in rough terms, we write
Qn as Q(1)

n + Q
(2)
n , where EQ(1)

n = o(n), and VarQ(2)
n = o(n2). Moreover, we will

soon see that Q(1)
n , Q

(2)
n ≥ 0, and this suffices to complete the proof.

For all m := mn ∈ {1 , . . . , n− 1} we write

(2.23) Qn = Q1,m
n +Q2,m

n ,
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j

i
Fig 1. A decomposition of Qn

where

(2.24) Q1,m
n :=

∑∑

1≤i<j≤n:
j≥i+m

1{Si=Sj} and Q2,m
n :=

∑∑

1≤i<j≤n:
j<i+m

1{Si=Sj}.

Because n > m, we have

(2.25) EQ1,m
n ≤ n

∞∑

k=m

P{Sk = 0}.

We estimate the variance of Q2,m
n next. We do this by first making an observation.

Throughout the remainder of this proof, define for all subsets Γ of N2,

(2.26) Υ(Γ) :=
∑∑

(i,j)∈Γ

1{Si=Sj}.

Supppose Γ1,Γ2, . . . ,Γν are finite disjoint sets in N2, with common cardinality,
and the added property that whenever 1 ≤ a < b ≤ ν, we have Γa < Γb in the sense
that i < k and j < l for all (i , j) ∈ Γa and (k , l) ∈ Γb. Then, it follows that

(2.27) {Υ(Γν)}νµ=1 is an i.i.d. sequence.

For all integers p ≥ 0 define

Bmp :=
{

(i , j) ∈ N2 : (p− 1)m < i < j ≤ pm
}
,

Wm
p :=

{
(i , j) ∈ N2 : (p− 1)m < i ≤ pm < j ≤ (p+ 1)m

}
.

(2.28)

In Figure 1, {Bmp }∞p=1 denotes the collection black and {Wm
p }∞p=1 the white triangles

that are inside the slanted strip.
We may write

(2.29) Q2,m
(n−1)m =

n−1∑

p=1

Υ(Bmp ) +
n−1∑

p=1

Υ(Wm
p ).
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Consequently,

(2.30) VarQ2,m
(n−1)m ≤ 2Var

n−1∑

p=1

Υ(Bmp ) + 2Var
n−1∑

p=1

Υ(Wm
p ).

If 1 ≤ a < b ≤ m−1, then Bma < Bmb and Wm
a < Wm

b . Consequently, (2.27) implies
that

(2.31) VarQ2,m
(n−1)m ≤ 2(n− 1) [Var Υ(Bm1 ) + Var Υ(Wm

1 )] .

Because Υ(Bm1 ) and Υ(Wm
1 ) are individually sums of not more than

(
m
2

)
-many

ones,

(2.32) VarQ2,m
(n−1)m ≤ 2(n− 1)m2.

Let Q
(1)
n := Q1,m

n and Q
(2)
n := Q2,m

n , where m = mn := n1/4 [say]. Then,
Qn = Q

(1)
n + Q

(2)
n , and (2.25) and (2.32) together imply that

EQ(1)
(n−1)m = o((n − 1)m). Moreover, VarQ(2)

(n−1)m = o((nm)2). This gives us the
desired decomposition of Q(n−1)m. Now we complete the proof: Thanks to (2.22),

(2.33) EQ(2)
(n−1)m ∼ nm ·

∞∑

j=1

P{Sj = 0} as n→∞.

Therefore, the variance of Q(2)
(n−1)m is little-o of the square of its mean. This and the

Chebyshev inequality together imply that Q(2)
(n−1)m/(nm) converges in probability

to
∑∞
j=1 P{Sj = 0}. On the other hand, we know also that Q(1)

(n−1)m/(nm) converges
to zero in L1(P) and hence in probability. Consequently, we can change variables
and note that as n→∞,

(2.34)
Qnm
nm

→
∞∑

j=1

P{Sj = 0} in probability.

If k is between (n− 1)m and nm, then

(2.35)
Q(n−1)m

nm
≤ Qk

k
≤ Qnm

(n− 1)m
.

This proves (2.21), and hence the theorem, in the transient case.
In order to derive the recurrent case, it suffices to prove that Qn/n → ∞ in

probability as n→∞.
Let us choose and hold an integer m ≥ 1—so that it does not grow with n—and

observe that Qn ≥ Q2,m
n as long as n is sufficiently large. Evidently,

EQ2,m
n =

∑∑

1≤i<j≤n:
j<i+m

P{Sj = Si}

= (n− 1)
m−1∑

k=1

P{Sk = 0}.
(2.36)
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We may also observe that (2.32) continues to hold in the present recurrent setting.
Together with the Chebyshev inequality, these computations imply that as n→∞,

(2.37)
Q2,m
n(m−1)

n
→

m−1∑

k=1

P{Sk = 0} in probability.

Because Qn(m−1) ≥ Q2,m
n(m−1), the preceding implies that

(2.38) lim
n→∞

P

{
Qn(m−1)

n
≥ 1

2

m∑

k=1

P{Sk = 0}
}

= 1.

A monotonicity argument shows that Qn(m−1) can be replaced by Qn without al-
tering the end-result; see (2.35). By recurrence, if λ > 0 is any predescribed positive
number, then we can choose [and fix] our integer m such that∑m
k=1 P{Sk = 0} ≥ 2λ. This proves that limn→∞ P{Qn/n ≥ λ} = 1 for all λ > 0,

and hence follows the theorem in the recurrent case.

3. Proofs of the Main Results

Now we introduce a sequence {ξx}x∈Zd of random variables, independent [under P]
of {qi}∞i=1 and the random walk {Si}∞i=0, such that

(3.1) Eξ0 = 0, E
(
ξ2
0

)
= σ2, and µ̂3 := E

(
|ξ0|3

)
<∞.

Define

(3.2) ĥxn :=
∣∣∣∣
Lxn (Lxn − 1)

2

∣∣∣∣
1/2

ξx for all n ≥ 1 and x ∈ Zd.

Evidently, {ĥxn}x∈Zd is a sequence of [conditionally] independent random variables,
under P̂, and has the same [conditional] mean and variance as {hxn}x∈Zd .

Lemma 3.1. There exists a positive and finite constant C∗ = C∗(σ) such that if
f : Rd → R is three time continuously differentiable, then for all n ≥ 1,

(3.3)

∣∣∣∣∣∣
Ef


∑

x∈Zd

ĥxn


− Ef(Hn)

∣∣∣∣∣∣
≤ C∗Mf (µ̂3 + µ6)n

∣∣∣∣∣∣

n∑

j=0

P{Sj = 0}

∣∣∣∣∣∣

2

,

with Mf := supx∈Rd |f ′′′(x)|.
Proof. Temporarily choose and fix some y ∈ Zd, and notice that

f(Hn)

= f


 ∑

x∈Zd\{y}
hxn


+ f ′


 ∑

x∈Zd\{y}
hxn


hyn +

1
2
f ′′


 ∑

x∈Zd\{y}
hxn


 |hyn|2

+Rn,

(3.4)

where |Rn| ≤ 1
6‖f ′′′‖∞ |hyn|3. It follows from this and Lemma 2.1 that

Êf(Hn)

= Êf


 ∑

x∈Zd\{y}
hxn


+

σ2

2
Lyn (Lyn − 1) Êf ′′


 ∑

x∈Zd\{y}
hxn


+R(1)

n ,
(3.5)
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where
∣∣∣R(1)

n

∣∣∣ ≤ CMfµ6

12
|Lxn (Lxn − 1)|3/2 P-a.s.

≤ CMfµ6

12
|Lyn|3 .

(3.6)

We proceed as in (3.4) and write

f


ĥyn +

∑

x∈Zd\{y}
hxn




= f


 ∑

x∈Zd\{y}
hxn


+ f ′


 ∑

x∈Zd\{y}
hxn


 ĥyn +

1
2
f ′′


 ∑

x∈Zd\{y}
hxn



∣∣∣ĥyn
∣∣∣
2

+ R̂n,

(3.7)

where |R̂n| ≤ 1
6Mf |ĥyn|3 ≤ 1

12
√

2
Mf |Lyn|3 |ξy|3. It follows from this and Lemma 2.1

that

Êf


ĥyn +

∑

x∈Zd\{y}
hxn




= Êf


 ∑

x∈Zd\{y}
hxn


+

σ2

2
Lyn (Lyn − 1) Êf ′′


 ∑

x∈Zd\{y}
hxn


+R(2)

n ,

(3.8)

where |R(2)
n | ≤ 1

12
√

2
µ̂3Mf |Lyn|3. Define C∗ := (C+ 1)/2 to deduce from the preced-

ing and (3.5) that P-a.s.,

(3.9)

∣∣∣∣∣∣
Êf


ĥyn +

∑

x∈Zd\{y}
hxn


− Êf


∑

x∈Zd

hxn



∣∣∣∣∣∣
≤ A

6
|Lyn|3,

where A := C∗Mf (µ̂3 + µ6). The preceding computes the effect of replacing the
contribution of hxn to Hn but the independent quantity ĥyn, for each fixed y, and
uses only the fact that the ĥ’s are a conditionally independent sequence with the
same means and variances as their corresponding h’s. Therefore, if we choose and
fix another point y ∈ Zd\{y}, then the very same constant A satisfies the following:
Almost surely [P],

(3.10)

∣∣∣∣∣∣
Êf


ĥzn + ĥyn +

∑

x∈Zd\{y,z}
hxn


− Êf


ĥyn +

∑

x∈Zd\{y}
hxn



∣∣∣∣∣∣
≤ A

6
|Lzn|3.

And hence, the triangle inequality yields the following: P-a.s.,
∣∣∣∣∣∣
Êf


ĥzn + ĥyn +

∑

x∈Zd\{y,z}
hxn


− Êf


∑

x∈Zd

hxn



∣∣∣∣∣∣

≤ A

6
(
|Lyn|3 + |Lzn|3

)
.

(3.11)
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Because
∑
x∈Zd hxn = Hn, it is now possible to see how we can iterate the previous

inequality to find that P-a.s.,

(3.12)

∣∣∣∣∣∣
Êf


∑

x∈Zd

ĥxn


− Êf(Hn)

∣∣∣∣∣∣
≤ A

6

∑

y∈Zd

|Lyn|3.

We take expectations and appeal to Lemma 2.2 to finish.

Next, we prove Theorem 1.1.

Proof of Theorem 1.1. We choose, in Lemma 3.1, the collection {ξx}x∈Zd to
be i.i.d. mean-zero normals with variance σ2. Then, we apply Lemma 3.1 with
f(x) := g(x/n1/2) for a smooth bounded function g with bounded derivatives. This
yields,

(3.13)

∣∣∣∣∣∣
Eg(Hn/n

1/2)− Eg


 1
n1/2

∑

x∈Zd

ĥxn



∣∣∣∣∣∣
≤ const

n1/2
.

In this way,

∑

x∈Zd

ĥxn
D=

σ√
2

∣∣∣∣∣∣
∑

x∈Zd

Lxn (Lxn − 1)

∣∣∣∣∣∣

1/2

N(0 , 1) under P̂

=
σ√
2

∣∣∣∣∣∣
−n+

∑

x∈Zd

(Lxn)2

∣∣∣∣∣∣

1/2

N(0 , 1),

(3.14)

where D= denotes equality in distribution, and N(0 , 1) is a standard normal random
variable under P̂ as well as P. Therefore, in accord with Theorem 2.4,

1
n1/2

∑

x∈Zd

ĥxn
D=

σ√
2

∣∣∣∣∣∣
−1 +

1
n

∑

x∈Zd

(Lxn)2

∣∣∣∣∣∣

1/2

N(0 , 1)

= o
P̂

(1) + γ1/2 ·N(0 , σ2),

(3.15)

where o
P̂

(1) is a term that converges to zero as n → ∞ in P̂-probability a.s. [P].
Equation (3.13) then completes the proof in the transient case.

Theorem 1.2 relies on the following “coupled moderate deviation” result.

Proposition 3.2. Suppose that S is recurrent. Consider a sequence {εj}∞j=1 of
nonnegative numbers that satisfy the following:

(3.16) lim
n→∞

ε3nn

∣∣∣∣∣
n∑

k=1

P{Sk = 0}
∣∣∣∣∣

2

= 0.

Then for all compactly supported functions f : Rd → R that are infinitely differen-
tiable,

(3.17) lim
n→∞

|E [f (εnWn)]− E [f (εnHn)]| = 0,
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Proof. We apply Lemma 3.1 with the ξx’s having the same common distribution as
q1, and with f(x) := g(εnx) for a smooth and bounded function g with bounded
derivatives. This yields,

∣∣∣∣∣∣
E


g


εn

∑

x∈Zd

|Lxn (Lxn − 1)|1/2 Z(x)




− E [g (εnHn)]

∣∣∣∣∣∣

≤ 2C∗Mgµ6nε
3
n

∣∣∣∣∣
n∑

k=0

P{Sk = 0}
∣∣∣∣∣

2

= o(1),

(3.18)

owing to Lemma (3.4).
According to Taylor’s formula,

g


εn

∑

x∈Zd

|Lxn (Lxn − 1)|1/2 Z(x)




= g


εn

∑

x∈Zd

Z(x)Lxn


+ εn

∑

x∈Zd

(
|Lxn (Lxn − 1)|1/2 − Lxn

)
Z(x) ·R,

(3.19)

where |R| ≤ supx∈Rd |g′(x)|. Thanks to (2.2), we can write the preceding as follows:

g


εn

∑

x∈Zd

|Lxn (Lxn − 1)|1/2 Z(x)


− g (εnWn)

= εn
∑

x∈Zd

(
|Lxn (Lxn − 1)|1/2 − Lxn

)
Z(x) ·R.

(3.20)

Consequently, P-almost surely,
∣∣∣∣∣∣
Ê


g


εn

∑

x∈Zd

|Lxn (Lxn − 1)|1/2 Z(x)




− Ê [g (εnWn)]

∣∣∣∣∣∣

≤ sup
x∈Rd

|g′(x)|σ · εn



Ê


∑

x∈Zd

(
|Lxn (Lxn − 1)|1/2 − Lxn

)2







1/2

.

(3.21)

We apply the elementary inequality (a1/2−b1/2)2 ≤ |a−b|—valid for all a, b ≥ 0—to
deduce that P-almost surely,

∣∣∣∣∣∣
Ê


g


εn

∑

x∈Zd

|Lxn (Lxn − 1)|1/2 Z(x)




− Ê [g (εnWn)]

∣∣∣∣∣∣

≤ sup
x∈Rd

|g′(x)|σ · εn



Ê


∑

x∈Zd

Lxn







1/2

= sup
x∈Rd

|g′(x)|σ · εnn1/2.

(3.22)
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We take E-expectations and apply Lemma (3.4) to deduce from this and (3.18) that

(3.23) |E [g (εnWn)]− E [g (εnHn)]| = o(1).

This completes the proof.

Our proof of Theorem 1.2 hinges on two more basic lemmas. The first is an
elementary lemma from integration theory.

Lemma 3.3. Suppose X := {Xn}∞n=1 and Y := {Yn}∞n=1 are Rd-valued random
variables such that: (i) X and Y each form a tight sequence; and (ii) for all bounded
infinitely-differentiable functions g : Rd → R,

(3.24) lim
n→∞

|Eg(Xn)− Eg(Yn)| = 0.

Then, the preceding holds for all bounded continuous functions g : Rd → R.

Proof. The proof uses standard arguments, but we repeat it for the sake of com-
pleteness.

Let Km := [−m,m]d, where m takes values in N. Given a bounded continuous
function g : Rd → R, we can find a bounded infinitely-differentiable function
hm : Rd → R such that |hm − g| < 1/m on Km. It follows that

|Eg(Xn)− Eg(Yn)| ≤ 2/m+ |Ehm(Xn)− Ehm(Yn)|
+ 2 sup

x∈Rd

|g(x)|
(
P{Xn 6∈ Km}+ P{Yn 6∈ Km}

)
.(3.25)

Consequently,

lim sup
n→∞

|Eg(Xn)− Eg(Yn)|

≤ 2/m+ 2 sup
x∈Rd

|g(x)| sup
j≥1

(P{Xj 6∈ Km}+ P{Yj 6∈ Km}) .
(3.26)

Let m diverge and appeal to tightness to conclude that the left-had side vanishes.

The final ingredient in the proof of Theorem 1.1 is the following harmonic-
analytic result.

Lemma 3.4. If εn := 1/an, then (3.16) holds.

Proof. Let φ denote the characteristic function of S1. Our immediate goal is to
prove that |φ(t)| < 1 for all but a countable number of t ∈ Rd. We present an
argument, due to Firas Rassoul-Agha, that is simpler and more elegant than our
original proof.

Suppose S′1 is an independent copy of S1, and note that whenever t ∈ Rd is
such that |φ(t)| = 1, D := exp{it · (S1 − S′1)} has expectation one. Consequently,
E(|D − 1|2) = E(|D|2) − 1 = 0, whence D = 1 a.s. Because S1 is assumed to have
at least two possible values, S1 6= S′1 with positive probability, and this proves that
t ∈ 2πZd. It follows readily from this that

(3.27)
{
t ∈ Rd : |φ(t)| = 1

}
= 2πZd,

and in particular, |φ(t)| < 1 for almost all t ∈ Rd.
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By the inversion theorem (Spitzer (1976)[P3(b), p. 57]), for all n ≥ 0,

(3.28) P{Sn = 0} =
1

(2π)d

∫

(−π,π)d

{φ(t)}n dt.

This and the dominated convergence theorem together tell us that P{Sn = 0} =
o(1) as n→∞, whence it follows that

(3.29)
n∑

k=1

P{Sk = 0} = o(n) as n→∞.

For our particular choice of εn we find that

(3.30) ε3nn

∣∣∣∣∣
n∑

k=1

P{Sk = 0}
∣∣∣∣∣

2

=

(
1
n

n∑

k=1

P{Sk = 0}
)1/2

,

and this quantity vanishes as n→∞ by (3.29). This proves the lemma.

Proof of Theorem 1.2. Let εn := 1/an. In light of Proposition 3.2, and Lemmas 3.3
and 3.4, it suffices to prove that the sequences n 7→ εnWn and n 7→ εnHn are tight.

Lemma 2.2, (2.2), and recurrence together imply that for all n large,

E
(
|εnWn|2

)
= σ2ε2n

∑

x∈Zd

E
(
|Lxn|2

)

≤ const · ε2nn
n∑

k=1

P{Sk = 0}

= const.

(3.31)

Thus, n 7→ εnWn is bounded in L2(P), and hence is tight.
We conclude the proof by verifying that n 7→ εnHn is tight. Thanks to (2.4) and

recurrence, for all n large,

E
(
|εnHn|2

)
≤ const · ε2nE

∑

x∈Zd

(Lxn)2

≤ const · ε2nn
n∑

k=1

P{Sk = 0}

= const.

(3.32)

Confer with Lemma 2.2 for the penultimate line. Thus, n 7→ εnHn is bounded in
L2(P) and hence is tight, as was announced.
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Recovery of Distributions via Moments

Robert M. Mnatsakanov1,∗ and Artak S. Hakobyan2,∗

West Virginia University

Abstract: The problem of recovering a cumulative distribution function (cdf)
and corresponding density function from its moments is studied. This problem
is a special case of the classical moment problem. The results obtained within
the moment problem can be applied in many indirect models, e.g., those based
on convolutions, mixtures, multiplicative censoring, and right-censoring, where
the moments of unobserved distribution of actual interest can be easily esti-
mated from the transformed moments of the observed distributions. Nonpara-
metric estimation of a quantile function via moments of a target distribution
represents another very interesting area where the moment problem arises. In
all such models one can apply the present results to recover a function via its
moments. In this article some properties of the proposed constructions are de-
rived. The uniform rates of convergence of the approximation of cdf, its density
function, quantile and quantile density function are obtained as well.
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1. Introduction

The probabilistic Stielties moment problem can be described as follows: let a se-
quence ν = {µj , j = 0, 1, . . . } of real numbers be given. Find a probability distribu-
tion on the non-negative real line R+ = [0,∞), such that µj =

∫
tjdF (t) for j ∈

N = {0, 1, . . . }. The classical Stieltjes moment problem was introduced first by
Stieltjes [21]. When the support of the distribution F is compact, say,
supp{F} = [0, T ] with T < ∞, then the corresponding problem is known as a
Hausdorff moment problem.

Consider two important questions related to the Stieltjes (or Hausdorff) moment
problem:

(i) If the distribution F exists, is it uniquely determined by the moments {µj}?
(ii) How is this uniquely defined distribution F reconstructed?
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If there is a positive answer to question (i) we say that a distribution F is moment-
determinate (M -determinate), otherwise it is M -indeterminate.

In this paper we mainly address the question of recovering the M -determinate
distribution (density and quantile functions) via its moments in the Hausdorff mo-
ment problem, i.e., we study question (ii). Another question we focus on here is the
estimation of an unknown distribution and its quantile function, given the estimated
moments of the target distribution.

It is known from the probabilistic moment problem that under suitable condi-
tions an M -determinate distribution is uniquely defined by its moments. There are
many articles that investigated the conditions (for example, the Carlemann’s and
the Krein’s conditions), under which the distributions are either M -determinate or
M -indeterminate. See, e.g., Akhiezer [2], Feller [6], Lin [10-11], and Stoyanov [22-24]
among others. However, there are very few works dealing with the reconstruction of
distributions via their moments. Several inversion formulas were obtained by invert-
ing the moment generating function and Laplace transform (Shohat and Tamarkin
[20], Widder [27], Feller [6], Chauveau et al. [4], and Tagliani and Velasquez [25]).
These methods are too restrictive, since there are many distributions for which the
moment generating function does not exist even though all the moments are finite.

The reconstruction of an M -determinate cdf by means of mixtures having the
same assigned moments as the target distribution have been proposed in Lindsay
et al. [12]. Note that this procedure requires calculations of high-order Hankel de-
terminants, and due to ill-conditioning of the Hankel matrices this method is not
useful when the number of assigned moments is large. The reconstruction of an
unknown density function using the Maximum Entropy principle with the specified
ordinary and fractional moments has been studied in Kevasan and Kapur [9] and
Novi Inverardi et al. [18], among others.

In Mnatsakanov and Ruymgaart [17] the constructions (2.2) and (3.13) (see
Sections 2 and 3 below) have been introduced, and only their convergence has been
established.

Different types of convergence of maximum entropy approximation have been
studied by Borwein and Lewis [3], Frontini and Tagliani [7], and Novi Inverardi et
al. [18], but the rates of approximations have not been established yet. Our con-
struction enables us to derive the uniform rate of convergence for moment-recovered
cdfs Fα,ν , corresponding quantile function Qα, and the uniform convergence of the
moment-recovered density approximation fα,ν , as the parameter α → ∞. Other
constructions of moment-recovered cdfs and pdfs (see, (3.13) and (3.14) in Remark
3.2) were proposed in Mnatsakanov [13-14], where the uniform and L1-rates of the
approximations were established.

The paper is organized as follows: in Section 2 we introduce the notation and
assumptions, while in Section 3 we study the properties of Fα,ν and fα,ν . Note that
our construction also gives a possibility to recover different distributions through the
simple transformations of moment sequences of given distributions (see Theorem
3.1 in Section 3 and similar properties derived in Mnatsakanov [13]: Theorem 1
and Corollary 1). In Theorem 3.2 we state the uniform rate of convergence for
moment-recovered cdfs. In Theorem 3.3 as well as in Corollaries 3.1 and 3.2 we
apply the constructions (2.2) and (3.11) to recover the pdf f , the quantile function
Q, and the corresponding quantile density function q of F given the moments of
F . In Section 4 some other applications of the constructions (2.2) and (3.11) are
discussed: the uniform convergence of the empirical counterpart of (2.2), the rate of
approximation of moment-recovered quantile function (see (4.4) in Section 4) along
with the demixing and deconvolution problems in several particular models.
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Note that our approach is particularly applicable in situations where other esti-
mators cannot be used, e.g., in situations where only moments (empirical) are avail-
able. The results obtained in this paper will not be compared with similar results
derived by other methods. We only carry out the calculations of moment-recovered
cdfs, pdfs, and quantile functions, and compare them with the target distributions
via graphs in several simple examples. We also compare the performances of Fα,ν
and fα,ν with the similar constructions studied in Mnatsakanov [13-14] (see, Fig-
ures 1 (b) and 3 (b)). The moment-estimated quantile function Q̂α and well known
Harrell-Davis quantile function estimator Q̂HD (Sheather and Marron [19]) defined
in (4.6) and (4.7), respectively, are compared as well (see, Figure 2 (b)).

2. Notation and Assumptions

Suppose that the M -determinate cdf F is absolute continuous with respect to the
Lebesgue measure and has support [0, T ], T <∞. Denote the corresponding density
function by f . Our method of recovering the cdf F (x), 0 6 x 6 T , is based on an
inverse transformation that yields a solution of the Hausdorff moment problem.

Let us denote the moments of F by

(2.1) µj,F =
∫
tjdF (t) = (KF )(j), j ∈ N,

and assume that the moment sequence ν = (µ0,F , µ1,F , . . . ) determines F uniquely.
An approximate inverse of the operator K from (2.1) constructed according to

(2.2)
(
K−1
α ν

)
(x) =

[αx]∑

k=0

∞∑

j=k

(−α)j−k

(j − k)!
αk

k!
µj,F , 0 6 x 6 T , α ∈ R+,

is such that K−1
α KF →w F, as α → ∞ (see, Mnatsakanov and Ruymgaart [17]).

Here →w denotes the weak convergence of cdfs, i.e. convergence at each continuity
point of the limiting cdf. The success of the inversion formula (2.2) hinges on the
convergence

(2.3) Pα(t, x) =
[αx]∑

k=0

(αt)k

k!
e−αt →

{
1, t < x

0, t > x
,

as α→∞. This result is immediate from a suitable interpretation of the left hand
side as a sum of Poisson probabilities.

For any moment sequence ν = {νj , j ∈ N}, let us denote by Fν the cdf recovered
via Fα,ν = K−1

α ν according to (2.2), when α→∞, i.e.

(2.4) Fα,ν →w Fν , as α→∞ .

Note that if ν = {µj,F , j ∈ N} is the moment sequence of F , the statement (2.4)
with Fν = F is proved in Mnatsakanov and Ruymgaart [17].

To recover a pdf f via its moment sequence {µj,F , j ∈ N}, consider the ratio:

(2.5) fα,ν(x) =
∆Fα,ν(x)

∆
, ∆ =

1
α
,

where ∆Fα,ν(x) = Fα,ν(x+ ∆)− Fα,ν(x) and α→∞.
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In the sequel the uniform convergence on any bounded interval in R+ will
be denoted by −→u, while the sup-norm between two functions f1 and f2 by
|| f1 − f2 ||. Note also that the statements from Sections 3 and 4 are valid for
distributions defined on any compact [0, T ], T < ∞. Without loss of generality we
assume that F has support [0, 1].

3. Asymptotic Properties of Fα,ν and fα,ν

In this Section we present asymptotic properties of the moment-recovered cdf Fα,ν
and pdf fα,ν functions based on the transformation K−1

α ν (2.2). The uniform ap-
proximation rate of Fα,ν and the uniform convergence of fα,ν are derived as well.

Denote the family of all cdfs defined on [0, 1] by F. The construction (2.2) gives
us the possibility to recover also two non-linear operators Ak : F × F → F, k =
1, 2, defined as follows: denote the convolution with respect to the multiplication
operation on R+ by

(3.1) F1 ⊗ F2(x) =
∫
F1(x/τ) dF2(τ) := A1(F1, F2)(x), 0 6 x 6 1,

while the convolution with respect to the addition operation is denoted by

F1 ? F2(x) =
∫
F1(x− τ) dF2(τ) := A2(F1, F2)(x), 0 6 x 6 2 .

For any two moment sequences ν1 = {µj,F1 , j ∈ N} and ν2 = {µj,F2 , j ∈ N},
define ν1 � ν2 = {µj,F1 × µj,F2 , j ∈ N} and ν1 ⊕ ν2 = {ν̄j , j ∈ N}, where

(3.2) ν̄j =
j∑

m=0

(
j

m

)
µm,F1 × µj−m,F2 ,

while µ� kF = {µkj,F , j ∈ N} and F⊗ k = F ⊗ · · · ⊗ F for the corresponding k-fold
convolution (cf. (3.1)). Also denote by F ◦φ−1 the composition F (φ−1(x)), x ∈ [0, 1],
with φ - continuous and increasing function φ : [0, 1]→ [0, 1].

Since cdfs A1(F1, F2) = F1⊗F2, A2(F1, F2) = F1?F2, and F ◦φ−1 have compact
support, they all are M -determinate and have the moment sequences ν1�ν2, ν1⊕ν2,
and ν = {µ̄j , j ∈ N}, with

(3.3) µ̄j =
∫

[φ(t)]j dF (t),

respectively. Hence, applying Theorem 3.1 from Mnatsakanov and Ruymgaart [17]
a statement similar to the one in Mnatsakanov [13] (see Theorem 1 and Corollary
1, where T = T ′ = 1) is obtained. Besides, the following statement is true:

Theorem 3.1. If ν =
∑m
k=1 βk µ

� k
F , where

∑m
k=1 βk = 1, βk > 0, then (2.4) holds

with

(3.4) Fν =
m∑

k=1

βkF
⊗k .

Proof. The equation (3.4) follows from Theorem 1 (i) (Mnatsakanov [13]) and the
linearity of K−1

α ν.
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The construction (2.2) is also useful when recovering the quantile function Q(t) =
inf{x : F (x) > t} via moments (see (4.5) in Section 4). Define Qα = Fα,νQ

, where

(3.5) νQ = {
∫ 1

0

[F (u)]j du, j ∈ N} .

The following statement is true:

Corollary 3.1. If F is continuous, then Qα →w Q, as α→∞.

Proof. Replacing the functions φ and F in (3.3) by F and the uniform cdf on
[0, 1], respectively, we obtain from Theorem 1 (iv) (Mnatsakanov [13]) that Qα =
Fα,νQ

→w Fν = F−1 as α→∞.

Under additional conditions on the smoothness of F one can obtain the uniform
rate of convergence in (2.4) and, hence, in Theorem 3.1 too. Consider the following
condition

(3.6) F ′′ = f ′ is bounded on [0, 1] .

Theorem 3.2. If ν = {µj,F , j ∈ N}, and (3.6) holds, we have

sup
06x61

∣∣Fα,ν(x)− F (x)
∣∣ = O

(
1
α

)
, as α→∞.(3.7)

Proof. Let us use the following representation

Pα(t, x) = P{Nαt 6 αx} = P{S[αx] > αt}.

Here {Nαt, t ∈ [0, 1]} is a Poisson process with intensity αt, Sm =
∑m
k=0 ξk, S0 = 0,

with ξk being iid Exp(1) random variables. Integration by parts gives

Fα,ν(x) = (K−1
α ν)(x) =

∫ 1

0

[αx]∑

k=0

(αt)k

k!

∞∑

j=k

(−αt)j−k
(j − k)!

dF (t)(3.8)

=
∫ 1

0

Pα(t, x)dF (t) =
∫ 1

0

P{S[αx] > αt}dF (t)

= F (t) P{S[αx] > αt}
∣∣∣
1

0
−
∫ 1

0

F (t) dP{S[αx] > αt}

= P{S[αx] > α}+
∫ 1

0

F (t) dP{S[αx] 6 αt} =
∫ ∞

0

F (t) dP{S[αx] 6 αt}.

Thus, (3.6) and the argument used in Adell and de la Cal [1] yield (3.7).

Remark 3.1. When supp{F} = R+, Fα,ν(x) =
∫∞

0
Pα(t, x)dF (t) (cf. with

(3.8)). According to Mnatsakanov and Klaassen [16] (see the proof of Theorem 3.1),
one can derive the exact rate of approximation of Fα,ν in the space L2(R+, dF ).
Namely, if the pdf f is bounded, say by C > 0, then

∫ ∞

0

(
Fα,ν(x)− F (x)

)2

dF (x) ≤ 2C
α

.
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Now let us consider the moment-recovered density function fα,ν defined in (2.5)
and denote by ∆(f, δ) = sup|t−s|≤δ |f(t) − f(s)| the modulus of continuity of f ,
where 0 < δ < 1.

Theorem 3.3. If the pdf f is continuous on [0, 1], then fα,ν −→u f and

(3.9) || fα,ν − f ||≤ ∆(f, δ) +
2 || f ||
αδ2

+ o
( 1
α

)
, as α→∞.

Proof. Since [α(x+ 1/α)] = [αx] + 1, for any x ∈ [0, 1], we have

(3.10) fα,ν(x) = α
[ [αx]+1∑

k=0

∞∑

j=k

(−α)j−k

(j − k)!
αk

k!
µj,F −

[αx]∑

k=0

∞∑

j=k

(−α)j−k

(j − k)!
αk

k!
µj,F

]
,

and, after some algebra (3.10) yields

fα,ν(x) =
α[αx]+2

Γ([αx] + 2)
·
∞∑

m=0

(−α)m

m!
µm+[αx]+1,F .(3.11)

Let g(t, a, b) denote a gamma pdf with shape and scale parameters a and b, respec-
tively. Substitution of (2.1) into the right hand side of (3.11) gives

fα,ν(x) =
α[αx]+2

Γ([αx] + 2)

∫ 1

0

∞∑

m=0

(−αt)m
m!

t[αx]+1 dF (t)(3.12)

=
∫ 1

0

g(t, [αx] + 2, α) f(t)dt.

To show (3.9), note that the pdf g in (3.12) has mean ([αx] + 2)/α and variance
([αx] + 2)/α2, respectively. The rest of the proof is similar to the lines of Theorem
1 (i) (Mnatsakanov [14]).

Remark 3.2. In Mnatsakanov [13-14] the uniform and L1-rates of moment-
recovered approximations of F and f defined by

(3.13) F ∗α,ν(x) =
[αx]∑

k=0

α∑

j=k

(
α

j

)(
j

k

)
(−1)j−k µj,F

and

f∗α,ν(x) =
Γ(α+ 2)

Γ([αx] + 1)

α−[αx]∑

m=0

(−1)m µm+[αx],F

m! (α− [αx]−m)!
, x ∈ [0, 1] , α ∈ N,(3.14)

are established. In Section 4, see Example 4.2, the cdf F (x) = x3− 3x3 lnx and its
density function f(x) = −9x2 lnx, 0 6 t 6 1, are recovered using Fα,ν and F ∗α,ν ,
and fα,ν and f∗α,ν constructions, (see Figures 1 (b) and 3 (b), respectively).

The formulas (3.11) and (3.14) with ν = νQ defined according to (3.5) can be
used to recover a quantile density function

q(x) = Q′(x) =
1

f(F−1(x))
, x ∈ [0, 1].
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For example, consider fα,νQ
:= qα: the application of the first line in (3.12) with

F−1 instead of F yields

(3.15) qα(x) =
∫ 1

0

g(F (u), [αx] + 2, α) du

and corresponding moment-recovered quantile density function

qα,β(x) =
∫ 1

0

g(Fβ,ν(u), [αx] + 2, α) du , α , β ∈ N.

Here Fβ,ν is a moment-recovered cdf of F . As a consequence of Theorem 3.3 we
have the following

Corollary 3.2. If qα = fα,νQ
, with νQ defined in (3.5), and f is continuous on

[0, 1] with inf06x61 f(x) > γ > 0, then qα −→u q and

|| qα − q ||≤
∆(f, δ)
γ2

+
2 || f ||
α δ2 γ2

+ o
( 1
α

)
, as α→∞.

Finally, note that taking ν = νQ in (3.14), we derive another approximation q∗α =
f∗α,νQ

of q based on Beta densities β(·, a, b) with the shape parameters a = [αx] + 1
and b = α− [αx] + 1:

(3.16) q∗α(x) =
∫ 1

0

β(F (u), [αx] + 1, α− [αx] + 1) du .

4. Some Applications and Examples

In this Section the construction of the moment-recovered cdf Fα,ν is applied to the
problem of nonparametric estimation of a cdf, its density and a quantile functions as
well as to the problem of demixing in exponential, binomial and negative binomial
mixtures, and deconvolution in error-in-variable model. In Theorems 4.1 we derive
the uniform rate of convergence for the empirical counterpart of Fα,ν denoted by F̃α,
i.e. for F̃α = Fα,ν̂ , where ν̂ is the sequence of all empirical moments of the sample
from F . In Theorem 4.2 the uniform rate of approximation for moment-recovered
quantile function of F is obtained. Finally, the graphs of moment-recovered cdfs,
pdfs, and quantile functions are presented in Figures 1-3.

Direct model. Let X1, . . . , Xn be a random sample from F defined on [0, 1].
Denote by F̂n the empirical cdf (ecdf) of the sample X1, . . . , Xn:

F̂n(t) =
1
n

n∑

i=1

I[0,t](Xi) , 0 6 t 6 1 .

Substitution of the empirical moments

ν̂j =
1
n

n∑

i=1

Xj
i , j ∈ N ,

instead of µj,F into (2.2) yields

F̃α(x) = Fα,ν̂(x) =
∫ 1

0

Pα(t, x)d F̂n(t) =
∫ 1

0

P{S[αx] > αt}d F̂n(t) .
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Furthermore, the empirical analogue of (3.8) admits a similar representation

F̃α(x) =
∫ ∞

0

F̂n(t) dP{S[αx] 6 αt}.

The application of the Theorem 3.2 and the asymptotic properties of F̂n yield

Theorem 4.1. If ν = {µj,F , j ∈ N}, then under condition (3.6) we have

sup
06x61

∣∣F̃α(x)− F (x)
∣∣ = O

(
1√
n

)
+O

(
1
α

)
a.s., as α , n→∞.(4.1)

Remark 4.1. In Mnatsakanov and Ruymgaart [17] the weak convergence of the
moment-empirical processes {√n{F̃n(t)− F (t)}, t ∈ [0, 1]} to the Brownian bridge
is obtained.

Of course, when the sample is directly drawn from the cdf F of actual interest,
one might use the ecdf F̂n and empirical process Un =

√
n (F̂n − F ). The result

mentioned in Remark 4.1 yields, that even if the only information available is the
empirical moments, we still can construct different test statistics based on the
moment-empirical processes Ũn =

√
n (F̃n − F ).

On the other hand, using the construction (3.11), one can estimate the density
function f given only the estimated or empirical moments in:

fα,ν̂(x) =
α[αx]+2

Γ([αx] + 2)

∞∑

m=0

(−α)m

m!
ν̂m+[αx]+1 , x ∈ [0, 1] .(4.2)

Remark 4.2. In practice, the parameter α as well as the number of summands
in (4.2) (and the number of summands in the inner summation of Fα,ν̂) can be
chosen as the functions of n: α = α(n)→∞ and M = M(n)→∞ as n→∞, that
optimize the accuracy of corresponding estimates. Further analysis is required to
derive the asymptotic forms of α(n) and M(n) as n→∞. This question is currently
under investigation and is beyond the scope of the present article.

Note that the construction (4.2) yields the estimator f̂α(x) = fα,ν̂ with ν̂ =
{ν̂j , j ∈ N}:

f̂α(x) =
α

n

n∑

i=1

(αXi)[αx]+1

([αx] + 1)!
e−αXi =

1
n

n∑

i=1

g(Xi, [αx] + 2, α), x ∈ [0, 1] .

Here g(·, [αx] + 2, α) is defined in (3.12). The estimator f̂α does not represent
a traditional kernel density estimator of f . It is defined by a δ-sequence, which
consists of the gamma density functions of varying shapes (the shape and the rate
parameters are equal to [αx] + 2 and α, respectively). It is natural to use this
estimator when supp{F} = [0,∞), since, in this case, the supports of f and gamma
kernel densities coincide and one avoids the boundary effect of f̂α (cf. Chen [5]).

Some asymptotic properties such as the convergence in probability of f̂α uni-
formly on any bounded interval and the Integrated Mean Squared Error (IMSE )
of f̂α have been studied in Mnatsakanov and Ruymgaart [17] and Chen [5], respec-
tively.

Applying the results from Mnatsakanov and Khmaladze [15], where the neces-
sary and sufficient conditions for L1-consistency of general kernel density estimates
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are established, one can prove in a similar way (cf. Mnatsakanov [14], Theorem
3) that if f is continuous on [0, 1], then E || f̂α − f ||L1→ 0, as

√
α/n → 0 and

α , n→∞.

Exponential mixture model. Let Y1, . . . , Yn be a random sample from the mixture
of exponentials

G(x) =
∫ T

0

(1− e−x/τ ) dF (τ) , x > 0 .

The unknown cdf F can be recovered according to the construction Fα,ν = K−1
α ν

with ν = {µj,G/j!, j ∈ N}. Similarly, given the sample Y1, . . . , Yn from G and tak-
ing Fα,ν̂ = K−1

α ν̂, where ν̂ = {µ̂j,G/j!, j ∈ N}, we obtain the estimate of F . Here
{µ̂j,G, j ∈ N} are the empirical moments of the sample Y1, . . . , Yn. The regularized
inversion of the noisy Laplace transform and the L2-rate of convergence were ob-
tained in Chauveau et al. [4].

Binomial and negative binomial mixture models. When Y1, . . . , Yn is a random
sample from the binomial or negative binomial mixture distributions, respectively:

p(x) := P (Y = x) =
∫ 1

0

(
m

x

)
τx (1− τ)m−xdF (τ) , x = 0, . . .m ,

p(x) := P (Y = x) =
∫ 1

0

Γ(r + x)
Γ(r)x!

( 1
1 + τ

)r ( τ

1 + τ

)x
dG(τ) , x = 0, 1, . . . ,

where m and r are given positive integers. Assume that the unknown mixing cdfs F
and G are such that F has at most m+1

2 support points in (0, 1), while G is a right
continuous cdf on (0, 1). In both models the mixing distributions are identifiable
(see, for example, Teicher [26] for binomial mixture model). Note also that the jth
moments of F and G are related to the jth factorial moments of corresponding Yi’s
in the following ways:

µj,F =
1
m[j]

E(Y [j]
1 ) and µj,G =

1
r(j)

E(Y [j]
1 ) .

Here y[j] = y(y − 1) · · · (y − j + 1) and r(j) = r(r + 1) · · · (r + j − 1). To estimate
F and G one can use the moment-recovered formulas (2.2) or (3.13) with µj,F and
µj,G defined in previous two equations where the theoretical factorial moments are
replaced by corresponding empirical counterparts. The asymptotic properties of the
derived estimators of F and G will be studied in a separate work.

Deconvolution problem: error-in-variable model. Consider the random variable
Y = X+U, with cdf G, where U (the error) has some known symmetric distribution
F2, X has cdf F1 with a support [0, T ], and U and X are independent. This model,
known as an error-in-variable model, corresponds to the convolution G = F1 ? F2.
Assuming that all moments of X and U exist, the moments {ν̄j , j ∈ N} of Y
are described by (3.2). Hence, given the moments of U (with E(U) = 0), we can
recalculate the moments of F1 as follows: µ1,F1 = ν̄1, µ2,F1 = ν̄2−µ2,F2 , and so on.
So that, assuming that we already calculated µk,F1 , or estimated them by µ∗k,F1

for
1 6 k 6 j − 2, we will have, for any j > 1:

µj,F1 = ν̄j −
j∑

m=2

(
j

m

)
µm,F2 × µj−m,F1
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Fig 1. (a) Approximation of G(x) = x− x lnx by Fα,ν and (b) Approximation of G(x3) by Fα,ν
and by F ∗

α,ν

or, respectively,

µ∗j,F1
= µ̂j,G −

j∑

m=2

(
j

m

)
µm,F2 × µ∗j−m,F1

given the sample Y1, . . . , Yn from cdf G. Now the moment-recovered estimate of
F1 will have the form Fα,ν̂ = K−1

α ν̂, where ν̂ = {µ∗j,F1
, j ∈ N}. The alternative

construction of the kernel type estimate of F1 based on the Fourier transforms is
studied in Hall and Lahiri [8], where the

√
n-consistency and other properties of

the estimated moments µ∗j,F1
, j ∈ N, are derived as well.

Example 4.1. Consider the moment sequence µ = {1/(j + 1), j ∈ N}. The cor-
responding moment-recovered distribution Fα,µ = K−1

α µ is a good approximation
of F (x) = x already with α = 50 and M = 100.

Assume now that we want to recover the distribution G with corresponding mo-
ments νj,G = 1/(j + 1)2, j ∈ N. Since we can represent νG = µ � µ, we conclude
from Theorem 1 (i) in Mnatsakanov [13], that G = F ⊗ F , with F (x) = x, and
hence G(x) = x− x lnx, 0 6 x 6 1. We plotted the curves of Fα,νG

(the solid line)
and G (the dashed line) on Figure 1 (a). We took α = 50 and M = 200, the number
of terms in the inner summation of the formula (2.2). From Figure 1 (a) we can
see that the approximation of G by Fα,νG

at x = 0 is not as good as inside of the
interval [0, 1]. This happened because the condition (3.6) from Theorem 3.2 is not
valid for g′(x) = G′′(x) = −1/x.

Example 4.2. To recover the distribution F via moments νj = 9/(j+ 3)2, j ∈ N,
note that νj = νaj,G, with a = 1/3. Hence, F (x) = G(x3) = x3−x3 ln(x3), 0 6 x 6 1
(Theorem 1 (iii), Mnatsakanov [13]). We conducted computations of moment-
recovered cdf Fα,ν when α = 50 and the number of terms in the inner summation
of the formula (2.2) is equal to 200. Also, we calculated F ∗α,ν defined in (3.13) with
α = 32. See Figure 1 (b), where we plotted Fα,ν (the solid blue line), F ∗α,ν (the
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solid red line), and F (the dashed line), respectively. These two approximations of
cdf F justify a good fit already with α = 50 and M = 200 for the first one and with
α = 32 for the second one. From Figure 1 (b) we can see that the performance of
F ∗α,ν is slightly better compared to Fα,ν : F ∗α,ν does not have the “boundary” effect
around x = 1.

Estimation of a quantile function Q and quantile density function q. Assume
that a random variable X has a continuous cdf F defined on [0, 1]. To approximate
(estimate) the quantile function Q given only the moments (estimated moments)
of F , one can use Corollary 3.1. Indeed, after some algebra, we have

(4.3) Qα(x) = Fα,νQ
(x) =

∫ 1

0

Pα
(
F (u), x

)
du , 0 6 x 6 1 ,

where νQ and Pα(·, ·) are defined in (3.5) and in (2.3), respectively. Comparing (4.3)
and (3.8) we can prove in a similar way (see, the proof of Theorem 3.2) the following

Theorem 4.2. If f ′ is bounded and inf06x61 f(x) > γ > 0, then

sup
06x61

∣∣Qα(x)−Q(x)
∣∣ = O

(
1
α

)
, as α→∞.(4.4)

Now, given only the moment sequence ν of F , one can construct the approxima-
tion Qα,β of Q by substituting the moment-recovered cdf Fβ,ν (instead of F ) in the
right hand side of (4.3). Let us denote the corresponding approximation of Q by

(4.5) Qα,β(x) =
∫ 1

0

Pα
(
Fβ,ν(u), x

)
du , α , β ∈ N.

Figure 2 (a) shows the cdf F (x) = x3 − x3 ln(x3) (the dashed line), introduced in
Example 4.2, and its quantile approximation Qα,β (the solid line), when
ν = {9/(j + 3)2, j ∈ N}, α = β = 100, and M = 200.

Replacing F by the empirical F̂n in (4.3), (3.15), and in (3.16) yields the following
estimators, respectively, based on the spacings ∆X(i) = X(i)−X(i−1), i = 1, . . . , n+
1:

(4.6) Q̂α(x) = Fα,ν̂Q
(x) =

∫ 1

0

Pα
(
F̂n(u), x

)
du =

n+1∑

i=1

∆X(i) Pα
( i− 1

n
, x
)
,

q̂α(x) =
∫ 1

0

g(F̂n(u), [αx] + 2, α) du =
n+1∑

i=1

∆X(i) g
( i− 1

n
, [αx] + 2, α

)
,

and

q̂∗α(x) =
n+1∑

i=1

∆X(i) β
( i− 1

n
, [αx] + 1, α− [αx] + 1

)
.

Here ν̂Q = {
∫ 1

0
[F̂n(u)]jdu, j ∈ N}, while X(i), i = 1, . . . , n,X(0) = 0, X(n+1) = 1,

are the order statistics of the sample X1, . . . , Xn.
Now, let us compare the curves of Q̂α and the well known Harrell-Davis estimator

(4.7) Q̂HD(x) =
n∑

i=1

X(i) ∆Beta
( i
n
, (n+ 1)x, (n+ 1)(1− x)

)
,
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Fig 2. (a) Approximation of Q by Qα,β and (b) Estimation of Q(x) = x1/3 by Q̂α and by Q̂HD

where Beta
(
·, a, b

)
denotes the cdf of a Beta distribution with the shape parameters

a > 0 and b > 0. For asymptotic expressions of MSE and the bias term of Q̂HD we
refer the reader to Sheather and Marron [19]. Let us generate n = 100 independent
random variables X1, . . . , Xn from F (x) = x3, 0 6 x 6 1. Taking α = 100, we esti-
mate (see, Figure 2 (b)) the corresponding quantile functionQ(x) = x1/3, 0 6 x 6 1,
(the dashed line) by means of Q̂α (the solid line) and by Q̂HD (the dashed-dotted
line), defined in (4.6) and (4.7), accordingly. Through simulations we conclude that
the asymptotic behavior of the moment-recovered estimator Q̂α and the Harrell-
Davis estimator Q̂HD are similar. The MSE and other properties of Q̂α, q̂α, and
q̂∗α will be presented in a separate article.

Example 4.1 (continued). Assume now that we want to recover pdf of the dis-
tribution G studied in the Example 4.1 via the moments νj,G = 1/(j + 1)2, j ∈ N.
On the Figure 3 (a) we plotted the curves of the moment-recovered density fα,ν
(the solid line) defined by (3.11) and g(x) = G′(x) = − lnx, 0 6 x 6 1 (the dashed
line), respectively. Here we took α = 50 and M = 200.

Example 4.2 (continued). Now let us recover the pdf f(x) = −9x2 lnx, 0 6 x 6 1,
of distribution F defined in Example 4.2 where νj,F = 9/(j+3)2, j ∈ N. We applied
the approximations fα,ν and f∗α,ν defined in (3.11) and (3.14), respectively, by
calculating the values of fα,ν and f∗α,ν at the points x = k/α, k = 1, 2, . . . , α.
Figure 3 (b) shows the curves of fα,ν (the blue dashed-dotted line), and f∗α,ν (the
red solid line), and f (the black dashed line). Here, we took α = 50 and M = 200
when calculating fα,ν and α = 32 in f∗α,ν . One can see that the performance of f∗α,ν
with α = 32 is better than the performance of fα,ν with α = 50 and M = 200.

After conducting many calculations of moment-recovered approximants for sev-
eral models we conclude that the accuracy of the formulas (2.2) and (3.11) are not
as good as the ones defined in (3.13) and (3.14) in the Hausdorff case. On the other
hand, the constructions (2.2) and (3.11) could be useful in the Sieltjes moment
problem as well.
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Fig 3. (a) Approximation of g(x) = − lnx by fα,ν and (b) Approximation of f(x) = −9x2 lnx by
fα,ν and f∗α,ν
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Asymptotic Efficiency of Simple Decisions

for the Compound Decision Problem

Eitan Greenshtein1,∗ and Ya’acov Ritov2,∗

Duke University and Jerusalem, Israel

Abstract: We consider the compound decision problem of estimating a vector
of n parameters, known up to a permutation, corresponding to n independent
observations, and discuss the difference between two symmetric classes of es-
timators. The first and larger class is restricted to the set of all permutation
invariant estimators. The second class is restricted further to simple symmet-
ric procedures. That is, estimators such that each parameter is estimated by
a function of the corresponding observation alone. We show that under mild
conditions, the minimal total squared error risks over these two classes are
asymptotically equivalent up to essentially O(1) difference.
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1. Introduction

Let F = {Fµ : µ ∈M} be a parameterized family of distributions. Let Y1, Y2 . . . be
a sequence of independent random variables, where Yi takes value in some space Y,
and Yi ∼ Fµi , i = 1, 2, . . . . For each n, we suppose that the sequence µ1:n is known
up to a permutation, where for any sequence x = (x1, x2, . . . ) we denote the sub-
sequence xs, . . . , xt by xs:t. We denote by µ = µn the set {µ1, . . . , µn}, i.e., µ is µ1:n

without any order information. We consider in this note the problem of estimating
µ1:n by µ̂1:n under the loss

∑n
i=1(µ̂i − µi)2, where µ̂1:n = ∆(Y1:n). We assume

that the family F is dominated by a measure ν, and denote the corresponding
densities simply by fi = fµi , i = 1, . . . , n. The important example is, as usual,
Fµi = N(µi, 1).

Let DS = DSn be the set of all simple symmetric decision functions ∆, that is, all
∆ such that ∆(Y1:n) = (δ(Y1), . . . , δ(Yn)), for some function δ : Y →M. In partic-
ular, the best simple symmetric function is denoted by ∆S

µ = (δSµ(Y1), . . . , δSµ(Yn)):

∆S
µ = arg min

∆∈DSn
E ||∆− µ1:n||2,
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and denote
rSn = E ||∆S

µ(Y1:n)− µ1:n||2,
where, as usual, ‖a1:n‖2 =

∑n
i=1 a

2
i .

The class of simple rules may be considered too restrictive. Since the µs are
known up to a permutation, the problem seems to be of matching the Y s to the µs.
Thus, if Yi ∼ N(µi, 1), and n = 2, a reasonable decision would make µ̂1 closer to
µ1∧µ2 as Y2 gets larger. The simple rule clearly remains inefficient if the µs are well
separated, and generally speaking, a bigger class of decision rules may be needed
to obtain efficiency. However, given the natural invariance of the problem, it makes
sense to be restricted to the class DPI = DPIn of all permutation invariant decision
functions, i.e, functions ∆ that satisfy for any permutation π and any (Y1, . . . , Yn):

∆(Y1, . . . , Yn) = (µ̂1, . . . , µ̂n) ⇐⇒ ∆(Yπ(1), . . . , Yπ(n)) = (µ̂π(1), . . . , µ̂π(n)).

Let
∆PI

µ = arg min
∆∈DPI

E ||∆(Y n)− µ1:n||2

be the optimal permutation invariant rule under µ, and denote its risk by

rPIn = E||∆PI
µ (Y1:n)− µ1:n||2.

Obviously DS ⊂ DPI , and whence rSn ≥ rPIn . Still, ‘folklore’, theorems in the
spirit of De Finetti, and results like Hannan and Robbins (1955), imply that asymp-
totically (as n→∞) ∆PI

µn and ∆S
µn will have ‘similar’ mean risks: rSn − rPIn = o(n).

Our main result establishes conditions that imply the stronger claim, rSn − rPIn =
O(1).

To repeat, µ is assumed known in this note. In the general decision theory frame-
work the unknown parameter is the order of its member to correspond with Y1:n,
and the parameter space, therefore, corresponds to the set of all the permutations
of 1, . . . , n.

An asymptotic equivalence as above implies, that when we confine ourselves to
the class of permutation invariant procedures, we may further restrict ourselves to
the class of simple symmetric procedures, as is usually done in the standard analysis
of compound decision problems. The later class is smaller and simpler.

The motivation for this paper stems from the way the notion of oracle is used in
some sparse estimation problems. Consider two oracles, both know the value of µ.
Oracle I is restricted to use only a procedure from the class DPI , while Oracle II is
further restricted to use procedures from DS . Obviously Oracle I has an advantage,
our results quantify this advantage and show that it is asymptotically negligible.
Furthermore, starting with Robbins (1951) various oracle-inequalities were obtained
showing that one can achieve nearly the risk of Oracle II, by a ‘legitimate’ statistical
procedure. See, e.g., the survey Zhang (2003), for oracle-inequalities regarding the
difference in risks. See also Brown and Greenshtein (2007), and Wenuha and Zhang
(2007) for oracle inequalities regarding the ratio of the risks. However, Oracle II is
limited, and hence, these claims may seem to be too weak. Our equivalence results,
extend many of those oracle inequalities to be valid also with respect to Oracle
I. We needed a stronger result than the usual objective that the mean risks are
equal up to o(1) difference. Many of the above mentioned recent applications of the
compound decision notion are about sparse situations when most of the µs are in
fact 0, the mean risk is o(1), and the only interest is in total risk.
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Let µ1, . . . ,µn be some arbitrary ordering of µ. Consider now the Bayesian
model under which (π, Y1:n), π a random permutation, have a distribution given by

π is uniformly distributed over P(1 : n);
Given π, Y1:n are independent, Yi ∼ Fµπ(i)

, i = 1, . . . , n,
(1.1)

where for every s < t, P(s : t) is the set of all permutations of s, . . . , t. The
above description induces a joint distribution of (M1, . . . ,Mn, Y1, . . . , Yn), where
Mi ≡ µπ(i), for a random permutation π.

The first part of the following proposition is a simple special case of general
theorems representing the best invariant procedure under certain groups as the
Bayesian decision with respect to the appropriate Haar measure; for background
see, e.g., Berger (1985), Chapter 6. The second part of the proposition was derived
in various papers starting with Robbins (1951).

In the following proposition and proof, Eµ1:n is the expectation under the model
in which the observations are independent, Yi ∼ Fµi , and Eµ is the expectation
under the above joint distribution of Y1:n and M1:n. Note that under the latter
model, for any i = 1, . . . , n, marginally Mi ∼ Gn, the empirical measure defined by
the vector µ, and conditional on Mi = m, Yi ∼ Fm.

Proposition 1.1. The best simple and permutation invariant rules are given by

(i) ∆PI
µ (Y1:n) = Eµ

(
M1:n

∣∣Y1:n

)
.

(ii) ∆S
µ(Y1:n) = (Eµ(M1|Y1), . . . , Eµ(Mn|Yn).

(iii) rSn = rPIn + Eµ ‖∆S
µ −∆PI

µ ‖2.

Proof. We need only to give the standard proof of the third part. First, note that
by invariance ∆PI

µ is an equalizer (over all the permutations of µ), and hence
Eµ1:n(∆PI

µ −µ1:n)2 = Eµ(∆PI
µ −M1:n)2. Also Eµ1:n(∆S

µ−µ1:n)2 = Eµ(∆S
µ−M1:n)2.

Then, given the above joint distribution,

rSn = Eµ ‖∆S
µ −M1:n‖2

= Eµ Eµ{‖∆S
µ −M1:n‖2|Y1:n}

= Eµ Eµ{‖∆S
µ −∆PI

µ ‖2 + ‖∆PI
µ −M1:n‖2|Y1:n}

= rPIn + Eµ ‖∆S
µ −∆PI

µ ‖2.

We now briefly review some related literature and problems. On simple symmet-
ric functions, compound decision and its relation to empirical Bayes, see Samuel
(1965), Copas (1969), Robbins (1983), Zhang (2003), among many other papers.

Hannan and Robbins (1955) formulated essentially the same equivalence problem
in testing problems, see their Section 6. They show for a special case an equivalence
up to o(n) difference in the ‘total risk’ (i.e., non-averaged risk). Our results for
estimation under squared loss are stated in terms of the total risk and we obtain
O(1) difference.

Our results have a strong conceptual connection to De Finetti’s Theorem. The
exchangeability induced on M1, . . . ,Mn, by the Haar measure, implies ‘asymptotic
independence’ as in De Finetti’s theorem, and consequently asymptotic indepen-
dence of Y1, . . . , Yn. Thus we expect E(M1|Y1) to be asymptotically similar to
E(M1|Y1, . . . , Yn). Quantifying this similarity as n grows, has to do with the rate of
convergence in De Finetti’s theorem. Such rates were established by Diaconis and
Freedman (1980), but are not directly applicable to obtain our results.
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After quoting a simple result in the following section, we consider in Section 3
the special important, but simple, case of two-valued parameter. In Section 4 we
obtain a strong result under strong conditions. Finally, the main result is given in
Section 5, it covers the two preceding cases, but with some price to pay for the
generality.

2. Basic Lemma and Notation

The following lemma is standard in comparison of experiments theory; for back-
ground on comparison of experiments in testing see Lehmann (1986), p-86. The
proof follows a simple application of Jensen’s inequality.

Lemma 2.1. Consider two pairs of distributions, {G0, G1} and {G̃0, G̃1}, such that
the first pair represents a weaker experiment in the sense that there is a Markov
kernel K, and Gi(·) =

∫
K(y, ·) dG̃i(y), i = 1, 2. Then

EG0 ψ
(dG1

dG0

)
≤ EG̃0

ψ
(dG̃1

dG̃0

)

for any convex function ψ

For simplicity denote fi(·) = fµi(·), and for any random variable X, we may write
X ∼ g if g is its density with respect to a certain dominating measure. Finally, for
simplicity we use the notation y−i to denote the sequence y1, . . . , yn without its i
member, and similarly µ−i = {µ1, . . . , µn} \ {µi}. Finally f−i(Y−j) is the marginal
density of Y−j under the model (1.1) conditional on Mj = µi.

3. Two Valued Parameter

We suppose in this section that µ can get one of two values which we denote by
{0, 1}. To simplify notation we denote the two densities by f0 and f1.

Theorem 3.1. Suppose that either of the following two conditions holds:

(i) f1−µ(Y1)/fµ(Y1) has a finite variance under both µ ∈ {0, 1}.
(ii)

∑n
i=1 µi/n→ γ ∈ (0, 1), and f1−µ(Y1)/fµ(Y1) has a finite variance under one

of µ ∈ {0, 1}.
Then Eµ ‖µ̂S − µ̂PI‖2 = O(1).

Proof. Suppose condition (i) holds. Let K =
∑n
i=1 µi, and suppose, WLOG, that

K ≤ n/2. Consider the Bayes model of (1.1). By Bayes Theorem

P (M1 = 1|Y1) =
Kf1(Y1)

Kf1(Y1) + (n−K)f0(Y1)
.

On the other hand

P (M1 = 1|Y1:n)

=
Kf1(Y1)fK−1(Y2:n)

Kf1(Y1)fK−1(Y2:n) + (n−K)f0(Y1)fK(Y2:n)

=
Kf1(Y1)

Kf1(Y1) + (n−K)f0(Y1)

(
1 +

(n−K)f0(Y1)
Kf1(Y1) + (n−K)f0(Y1)

( fK
fK−1

(Y2:n)− 1
))−1

= P (M1 = 1|Y1)
(

1 + γ
( fK
fK−1

(Y2:n)− 1
))−1

,

imsart-coll ver. 2008/08/29 file: Ritov.tex date: April 10, 2009



270 Greenshtein and Ritov

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

where, with some abuse of notation fk(Y2:n) is the joint density of Y2:n condi-
tional on

∑n
j=2 µj = k, and the random variable γ is in [0, 1]. We prove now that

fK/fK−1(Y2:n) converges to 1 in the mean square.
We use Lemma 2.1 (with ψ the square) to compare the testing of fK(Y2:k) vs.

fK−1(Y2:k) to an easier problem, from which the original problem can be obtained
by adding a random permutation. Suppose for simplicity and WLOG that in fact
Y2:K are i.i.d. under f1, while YK+1:n are i.i.d. under f0. Then we compare

gK−1(Y2:n) =
K∏

j=2

f1(Yj)
n∏

j=K+1

f0(Yj),

the true distribution, to the mixture

gK(Y2:n) = gK−1(Y2:n)
1

n−K
n∑

j=K+1

f1

f0
(Yj).

However, the likelihood ratio between gK and gK−1 is a sum of n−K terms, each
with mean 1 (under gK−1) and finite variance. The ratio between the gs is, therefore,
1 +Op(n−1/2) in the mean square. By Lemma 2.1, this applies also to the fs’ ratio.

Consider now the second condition. By assumption, K is of the same order as
n, and we can assume, WLOG, that the f1/f0 has a finite variance under f0. With
this understanding, the above proof holds for the second condition.

The condition of the theorem is clearly satisfied in the normal shift model: Fi =
N(µi, 1), i = 1, 2. It is satisfied for the normal scale model, Fi = N(0, σ2

i ), i = 1, 2,
if K is of the same order as n, or if σ2

0/2 < σ2
1 < 2σ2

0 .

4. Dense µ’s

We consider now another simple case in which µ can be ordered µ(1), . . . , µ(n) such
that the difference µ(i+1)−µ(i) is uniformly small. This will happen if, for example,
µ is in fact a random sample from a distribution with density with respect to
Lebesgue measure, which is bounded away from 0 on its support, or more generally,
if it is sampled from a distribution with short tails. Denote by Y(1), . . . , Y(n) and
f(1), . . . , f(n) the Y s and fs ordered according to the µs.

We assume in this section

(B1) For some constants An and Vn which are bounded by a slowly converging to
infinite sequence:

max
i,j
|µi − µj | = An,

Var
(f(j+1)

f(j)
(Y(j))

)
≤ Vn
n2
.

Note that condition (B1) holds for both the normal shift model and the normal
scale model, if µ behaves like a sample from a distribution with a density as above.

Theorem 4.1. If Assumption (B1) holds then

n∑

i=1

|µ̂PIi − µ̂Si |2 = Op(A2
nV

2
n /n).
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Proof. By definition

µ̂S1 =
∑n
i=1 µifi(Yi)∑n
i=1 fi(Yi)

,

µ̂PI1 =
∑n
i=1 µifi(Y1)f−i(Y2:n)∑n
i=1 fi(Y1)f−i(Y2:n)

,

where f−i is the density of Y2:n under µ−i:

f−i(y2:m) =
1

(n− 1)!

∑

π∈P(2:n)

n∏

j=2

fπ(j)(yj)
f1

fi
(yi).

The result will follow if we argue that

|µPI1 − µS1 | ≤ max
i,j
|µi − µj |

(
max
i,j

f−i
f−j

(Y2:n)− 1
)

= Op(AnVn/n).(4.1)

That is, maxi |f−i(Y2:n)/f−1(Y2:n) − 1| = Op(Vn/n). In fact we will establish a
slightly stronger claim that ‖f−i − f−1‖TV = Op(Vn/n), where ‖ · ‖TV denotes the
total variation norm.

We will bound this distance by the distance between two other densities. Let
g−1(y2:n) =

∏n
j=2 fj(yj), the true distribution of Y2:n. We define now a similar

analog of f−i. Let rj and y(rj) be defined by fj = f(rj) and y(rj) = yj , j = 1, . . . , n.
Suppose, for simplicity, that ri < r1. Let

g−i(y2:n) = g−1(y2:n)
r1−1∏

j=ri

f(j+1)

f(j)
(y(j)).

The case r1 < ri is defined similarly. Note that g−i depends only on µ−i. Moreover,
if Ỹ2:n ∼ g−j , then one can obtain Y2:n ∼ f−j by the Markov kernel that takes Ỹ2:n

to a random permutation of itself. It follows from Lemma 2.1

‖f−i − f−1‖TV ≤ ‖g−i − g−1‖TV
= Eµ2:n

∣∣∣ g−i
g−1

(Y2:n)− 1
∣∣∣

= Eµ2:n

∣∣∣
r1−1∏

j=k

f(j+1)

f(j)
(Y(j))− 1

∣∣∣

But, by assumption

Rk =
r1−1∏

j=k

f(j+1)

f(j)
(Y(j))

is a reversed L2 martingale, and it follows from Assumption (B1) that

max
k<r1

|Rk − 1| = Op(AnVn/n).

Similar argument applies to i, ri > r1, yielding

max
i
‖f−i − f−1‖TV = Op(AnVn/n)

We established (4.1). The theorem follows.
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5. Main Result

We assume:

(G1) For some C <∞: maxi∈{1,...,n} |µi| < C,
and maxi,j∈1,...,n Eµi(fµj (Y1)/fµi(Y1))2 < C. Also, there is γ > 0 such that
mini,j∈1,...,n Pµi(fµj (Y1)/fµi(Y1) > γ) ≥ 1/2.

(G2) The random variables

pj(Yi) =
fj(Yi)∑n
k=1 fk(Yi)

, i, j = 1, . . . , n.

are bounded in expectation by

E
n∑

i=1

n∑

j=1

(
pj(Yi)

)2
< C

n∑

i=1

E
1

nminj pj(Yi)
< Cn

E
n∑

i=1

∑n
j=1

(
pj(Yi)

)2

nminj pj(Yi)
< C.

Both assumptions describe a situation where the µs do not “separate”. They
cannot be too far one from another, geometrically or statistically (Assumption
(G1)), and they are dense in the sense that each Y can be explained by many of
the µs (Assumption (G2)). The conditions hold for the normal shift model if µn
are uniformly bounded: Suppose the common variance is 1 and |µj | < An. Then

E
n∑

j=1

( fj(Y1)∑n
k=1 fk(Y1)

)2

= E

∑n
j=1 f

2
j (Y1)

(
∑n
k=1 fk(Y1))2

≤ E
ne−Y

2
1 +2An|Y1|−A2

n

(ne−(Y 2
1 −2An|Y1|+A2

n)/2)2

=
1
n

E e4An|Y1|

=
1
n

(
e8A2

n+4Anµ1 + e8A2
n−4Anµ1

)
≤ 2
n
e12A2

n .

and the first part of (G2) hold. The other parts follow a similar calculations.

Theorem 5.1. Assume that (G1) and (G2) hold. Then

E ‖∆S
µ −∆PI

µ ‖2 = O(1)(i)

rSn − rPIn = O(1).(ii)

Corollary 5.2. Suppose F = {N(µ, 1) : |µ| < c} for some c < ∞, then the
conclusions of the theorem follow.

Proof. It was mentioned already in the introduction that when we are restricted to
permutation invariant procedure we can consider the Bayesian model under which
(π, Y1:n), π a random permutation, have a distribution given by (1.1). Fix now
i ∈ {1, . . . , n}. Under this model we want to compare

µSi = E(µπ(i)|Yi), i = 1, . . . , n
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to

µPIi = E(µπ(i)|Y1:n), i = 1, . . . , n.

More explicitly:

µSi =

∑n
j=1 µjfj(Yi)∑n
j=1 fj(Yi)

=
n∑

j=1

µjpj(Yi), i = 1, . . . , n

µPIi =

∑n
j=1 µjfj(Yi)f−j(Y−i)∑n
j=1 fj(Yi)f−j(Y−i)

=
n∑

j=1

µjpj(Yi)Wj(Y−i, Yi), i = 1, . . . , n,

(5.1)

where for all i, j = 1, . . . , n, fj(Yi) was defined in Section 2, and

pj(Yi) =
fj(Yi)∑n
k=1 fk(Yi)

,

Wj(Y−i, Yi) =
f−j(Y−i)∑n

k=1 pk(Yi)f−k(Y−i)

Note that
∑n
k=1 pk(Yi) = 1, and Wj(Y−i, Yi) is the likelihood ratio between two

(conditional on Yi) densities of Y−i, say gj0 and g1. Consider two other densities
(again, conditional on Yi):

g̃j0(Y−i|Yi) = fi(Yj)
∏

m 6=i,j
fm(Ym),

g̃j1(Y−i|Yi) = g̃j0(Y−i|Yi)
(∑

k 6=i,j
pk(Yi)

fj
fk

(Yk) + pi(Yi)
fj
fi

(Yj) + pj(Yi)
)

Note that gj0 = g̃j0 ◦K and g1 = g̃j1 ◦K, where K is the Markov kernel that takes
Y−i to a random permutation of itself. It follows from Lemma 2.1 that

E
(
|Wj(Y−i, Yi)− 1|2

∣∣Yi
)
≤ Eg̃j1

( g̃j0
g̃j1
− 1
)2

= Eg̃j0
( g̃j0
g̃j1
− 2 +

g̃j1
g̃j0

)
.

(5.2)

This expectation does not depend on i except for the value of Yi. Hence, to simplify
notation, we take WLOG i = j. Denote

L =
g̃j1
g̃j0

= pj(Yj) +
∑

k 6=i
pk(Yj)

fj
fk

(Yk)

V =
n

4
γmin

k
pk(Yj),
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where γ is as in (G1). Then by (5.2)

E
(
|Wj(Y−j , Yj)− 1|2

∣∣Yj
)
≤ Eg̃j0

( 1
L
− 2 + L

)

= Eg̃j0
(L− 1)2

L

≤ 1
V

Eg̃j0(L− 1)21I(L > V ) + Eg̃j0
1I(L ≤ V )

L

≤ Eg̃j0
1I(L ≤ V )

L
+

1
V

n∑

k=1

p2
k(Yj),

(5.3)

by G1. Bound

L ≥ γmin
k
pk(Yj)

n∑

k=1

1I(
fj
fk

(Yk) > γ) ≥ γmin
k
pk(Yj)(1 + U),

where U ∼ B(n− 1, 1/2) (the 1 is for the ith summand). Hence

Eg̃j0
1I(L ≤ V )

L
≤ 1
γmink pk(Yj)

dn/4e∑

k=0

1
k + 1

(
n− 1
k

)
2−n+1

=
1

γnmink pk(Yj)

dn/4e∑

k=0

(
n

k + 1

)
2−n+1

= O(e−n)
1

γnmink pk(Yj)

(5.4)

by large deviation.
From (G1), (G2), (5.1), (5.3), and (5.4):

E E
(
(µSi − µPIi )2

∣∣Yi
)

= E E
(( n∑

j=1

µjpj(Yi)
(
Wj(Y−i, Yi)− 1

))2∣∣Yi
)

≤ max
j
|µj |2E

n∑

j=1

pj(Yi)E
(
Wj(Y−i, Yi)− 1

)2)∣∣Yi
)

≤ κC3/n,

for some κ large enough. Claim (i) of the theorem follows. Claim (ii) follows (i) by
Proposition 1.1.
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Line

Rolando Cavazos–Cadena1,∗

and Graciela González–Faŕıas2,∗
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Abstract: For a general family of one-dimensional skew-symmetric probabil-
ity densities, the application of the maximum likelihood method to the esti-
mation of the asymmetry parameter λ is studied. Under mild conditions, the
existence and consistency of a sequence {λ̂n} of maximum likelihood estima-

tors is established, and the limit distributions of {λ̂n} and the sequence of
likelihood ratios are determined under the null hypothesis H0 : λ = 0. These
latter conclusions, which hold under differential singularity of the likelihood
function at λ = 0, extend to the present framework results recently obtained
for general statistical models with null Fisher information.
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1. Introduction

This work concerns likelihood inference for the general one-dimensional skew-
symmetric family, which is constructed as follows: Given two symmetric densities
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f and g on the real line—that is, f(x) = f(−x) and g(x) = g(−x) for all x ∈ IR—
let

(1.1) G(x) :=
∫ x

−∞
g(z) dz

be the cumulative distribution function of density g. Notice that∫
IR

[1−G(λw)]f(w) dw =
∫

IR
[1−G(−λw)]f(−w) dw =

∫
IR
G(λw)f(w) dw for every

λ ∈ IR, so that
∫

IR
2f(w)G(λw) dw = 1. This argument, due to Azzalini (1985),

shows that for each λ ∈ IR

(1.2) ρ(x;λ) := 2f(x)G(λx), x ∈ IR

is a genuine density, and the collection

(1.3) S(f, g) := {ρ(·;λ) |λ ∈ IR},
is the skew-symmetric family determined by f and g. When the parametrization
λ 7→ ρ(·;λ) is one-to-one, f(·) = ρ(·; 0) is the unique symmetric density in S(f, g),
and λ can be considered as a measure of the asymmetry (or skewness) of density
ρ(·;λ). The first systematic treatment of a skew-symmetric family was presented in
Azzalini (1985, 1986) for the case in which f and g coincide with the standard nor-
mal density ϕ, and location-scale and regression models based on S(ϕ,ϕ) as well as
multivariate extensions have been intensively studied during the last twenty years;
see Azzalini and Dalla Valle (1996), Azzalini and Capitanio (1999), Pewsey (2000),
Genton (2004) and the references therein. The analysis of the maximum likelihood
method for the location-scale model based on S(ϕ,ϕ) has proved most challeng-
ing since, in that context, the Fisher information matrix has incomplete rank at
λ = 0, a problem that also arises for the skew exponential family, which includes the
skew normal location-scale model as a particular case (Azzalini, 1986, DiCiccio and
Monti, 2004). The singularity of the information matrix has been analyzed via the
centered parametrization introduced in Azzalini (1985) and asymptotic results are
based on the recent work by Rotzintzky et al. (2000). Using the conclusions in this
latter paper, rates of convergence for maximum likelihood estimators are derived
in Chiogna (2005), and Sartori (2006) studied the finiteness of the estimator of the
asymmetry parameter.

As suggested by the previous comments, family S(ϕ,ϕ) has been intensively
studied, and a great effort has been done on generalizations of that model (Genton,
2004), so that looking for inference results applicable to a broad class of skew
families is, certainly, an interesting problem. This work is a first step in this direction
since, although no scale or location parameters will be introduced, the maximum
likelihood method applied to the estimation of the asymmetry parameter λ will be
studied under rather minimal conditions on densities f and g, making the likelihood
inference problem a very interesting one. The first objective of this note is

(i) To establish the existence of a sequence {λ̂n} of maximum likelihood estimators
of λ and to prove its consistency.

To see the interest behind this problem, denote the (kernel log-) likelihood corre-
sponding to a single observation x by

(1.4) `(λ;x) := log(G(λx)),

and observe that if g is the standard normal density, then `(·;x) is strictly concave
for x 6= 0, a property that yields the existence and consistency of maximum likeli-
hood estimators (Newey and McFadden, 1993). However, strict concavity of `(·;x)
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is far from being a general property, and may fail in common cases, for instance,
if g is the Laplace density. In this work, problem (i) above will be studied under
the minimal assumption that the parametrization λ 7→ ρ(·;λ) is identifiable and,
since the parameter space is not compact for the S(f, g) family, to the best of the
authors’ knowledge, in this context the existence and consistency of maximum like-
lihood estimators can not be directly obtained form general available results. The
second problem studied in this work concerns the asymptotic distribution of {λ̂n}
and, as usual, the analysis below requires differentiability assumptions on `(·;x),
and then, on density g. This problem will be studied under conditions allowing g
to be non smooth at x = 0, which can be roughly described as follows:

A1: g is continuous on IR, is ‘smooth’ outside 0, and has lateral derivatives at zero.

Under this requirement, it is not difficult to see that if the true parameter value,
say ν, is non-null, then `(·;x) is smooth on a neighborhood of ν if `(ν;x) < ∞.
Thus, when the information number at ν, given by
I(ν) =

∫
IR

(∂λ`(ν;x))2ρ(ν;x) dx(> 0), is finite, under standard regularity condi-
tions Wald’s classical results yield that

√
nI(ν)(λ̂n − ν) has a standard normal

distribution at the limit (Lehmann and Casella, 1998, Section 6.3, Shao, 1999,
Section 4.4). However, under the null hypothesis H0 : λ = 0 such a direct conclu-
sion is not possible, since g(·) is not necessarily differentiable in a neighborhood
of zero under condition A1 above. Also, observe that ∂λ`(0;x) = 2g(0)x, so that
I(0) = 4g(0)2

∫
R
x2f(x) dx; thus, I(0) is null if g(0) = 0 and, again, in this case the

asymptotic distribution of {λ̂n} can not be obtained from the results in the afore-
mentioned references. The case of null information at λ = 0 was recently studied
in a general context by Rotnitzky et al. (2000) under several assumptions, includ-
ing (a) compactness of the parameter space, and (b) the existence of higher order
derivatives ∂kλ`(λ;x) in a neighborhood of zero. Since in the present context nei-
ther the parameter space is compact, nor higher order derivatives ∂kλ`(λ;x) exist
around zero, if g(0) = 0 then the limiting distribution can not be solved by direct
application of available results under condition A1. Therefore, the second problem
considered in this note is

(ii) to determine both the limit distribution of the (appropriately normalized) se-
quence {λ̂n} under the hypothesis H0 : λ = 0, and the asymptotic null distribution
of the likelihood ratio statistic.

The approach used below to study problems (i) and (ii) can be described as follows:
The monotonicity of the mapping λ 7→ `(λ;x) is used to establish the existence of
maximizers λ̂n of the observed likelihood when the sample size n is large enough,
whereas the proof for the consistency of {λ̂n} follows the ideas in Cavazos-Cadena
and Gonzalez-Faŕıas (2007) where, under mild conditions, it is shown that sequence
{λ̂n} is consistent if and only if it is bounded with probability 1; here, after estab-
lishing the boundedness property, a direct proof of consistency is given via a simple
consequence of Kullback’s inequality. Concerning problem (ii), as in the results pre-
sented in Lehmann and Casella (1998, Section 6.3), Shao (1999, Section 4.4), or in
Rotnitzky et al. (2000), the analysis is based on Taylor series expansions for the
observed likelihood and its derivative around zero, which in the present context are
lateral expansions; they are used to show that the maximum likelihood estimator
is no null with probability increasing to 1, and the asymptotic distributions are
obtained via the central limit theorem and the strong law of large numbers.

The organization of the paper is as follows: Problem (i) is analyzed in the following
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three sections. Thus, in Section 2 the identification property of the parametrization
λ 7→ ρ(λ; ·) is discussed, the existence of a sequence {λ̂n} of maximum likelihood
estimators is established in Section 3, and the consistency of {λ̂n} is proved in Sec-
tion 4. After this point, the reminder of the paper concerns problem (ii). In Section
5 the basic dominance and smoothness assumptions are formally introduced, and
the main asymptotic result is stated as Theorem 5.1. Next, in Section 6 the neces-
sary technical tools concerning lateral Taylor series for the likelihood function and
its first derivative are established and, finally, the exposition concludes in Section
7 with a proof of Theorem 5.1.

Notation. Throughout the remainder X1, X2, X3, . . . stands for a sequence of
independent and identically distributed random variables with common density
belonging to family S(f, g) in (1.3): For each n = 1, 2, , . . ., set

(1.5) Xn
1 := (X1, . . . , Xn).

The distribution of the sequence (X1, X2, . . .) when ν is the true parameter value
is denoted by Pν [ · ], whereas Eν [ · ] stands for the corresponding expectation op-
erator. On the other hand, if H(·) is a function defined around zero, H(0+) :=
limx↘0H(x), and H(0−) := limx↗0H(x), whereas given A ⊂ IR, IA is the indica-
tor function of set A, that is, IA(x) = 1 if x ∈ A, whereas IA(x) = 0 when x /∈ A.
Finally, the following convention is enforced:

∑b
i=a Ci = 0 when b < a.

2. Identifiability

In this section the identifiability of the parametrization λ 7→ ρ(·;λ) is briefly dis-
cussed. This condition establishes that different parameters correspond to different
densities, and plays a fundamental role in parametric estimation (Newey and Mc-
Fadden, 1993).

Assumption 2.1. The mapping λ 7→ ρ(·;λ) is one-to-one, that is,
∫

IR

|ρ(x;λ)− ρ(x; ν)| dx =
∫

IR

2f(x)|G(λx)−G(νx)| dx 6= 0, if λ 6= ν;

see (1.2).

Some primitive conditions ensuring this requirement are now given.

Lemma 2.1. Assumption 2.1 holds under either of the following conditions (i)–
(iii).
(i) For every nonempty open interval J ⊂ IR,

∫
J
f(x) dx > 0;

(ii)
∫
J
g(x) dx > 0 for each nonempty open interval J ⊂ IR;

(iii) There exists δ > 0 such that
∫

J

g(x) dx > 0 and
∫

J

f(x) dx > 0,

for each nonempty open interval J ⊂ (0, δ).

Proof. Let λ and ν be fixed and different real numbers, and suppose that

(2.1)
∫

IR

f(x)|G(λx)−G(νx)| dx = 0.
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1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

A contradiction will be obtained under each of the three conditions in the lemma.
Assume that condition (i) holds. Given an open interval J ⊂ IR with positive length,
(2.1) and

∫
J
f(x) dx > 0 together yield that |G(λx) − G(νx)| = 0 for some x ∈ J ,

so that {x |G(λx)−G(νx) = 0} is dense in IR. Since G(·) is continuous, this set is
also closed, so that

(2.2) G(λx) = G(νx) for all x ∈ IR.

This fact implies that λ 6= 0 and ν 6= 0. Indeed, if ν = 0, it follows that λ 6= 0 and
the right-hand side equals 1/2 for all x, whereas the values of left-hand side cover the
whole interval (0, 1) as x moves on IR. Thus, ν 6= 0 and, similarly, λ 6= 0. Moreover,
(2.2) also yields that λ and ν have the same sign since, otherwise, as x → ∞ one
side of the equality converges to 1 and the other converges to 0. Therefore, recalling
that λ 6= ν, it follows that |λ| 6= |ν|, and without loss of generality it can be assumed
that β = |λ|/|ν| = λ/ν ∈ (0, 1). Replacing x by y/ν, (2.2) yields that, for all y ∈ IR,
G(y) = G(βy), and then

G(y) = G(βny), y ∈ IR, n = 1, 2, 3, . . . .

Letting n go to ∞, the continuity of G(·) and the inclusion β ∈ (0, 1) yield that
G(y) = G(0) = 1/2 for all y ∈ IR, in contradiction with the basic properties of a
distribution function.
Under condition (ii), G(b)−G(a) =

∫ b
a
g(x) dx > 0 for a < b, so that G(·) is strictly

increasing. Thus, since λ 6= ν, |G(λx)−G(νx)| > 0 for all x 6= 0, and it follows that
(2.1) is equivalent to

∫
IR
f(x) dx = 0, which is not possible, since f(·) is a density.

Suppose that condition (iii) occurs. In this context, G(·) is strictly increasing on
the interval (0, δ) and then on (−δ, δ), by symmetry. Next, define δ1 := δ/(|λ| +
|ν| + 1) and, recalling that λ 6= ν, notice that if x ∈ [δ1/2, δ1] then λx and νx are
different points in (−δ, δ), so that |G(λx)−G(νx)| > 0. Thus, by continuity of G(·),
minx∈[δ1/2,δ1] |G(λx)−G(νx)| =: ε > 0. Consequently,

∫

[δ1/2,δ1]

f(x)|G(λx)−G(νx)| dx ≥ ε
∫

[δ1/2,δ1]

f(x) dx > 0,

where the inclusion [δ1/2, δ1] ⊂ (0, δ) was used to set the last inequality. Therefore,
(2.1) can not occur under condition (iii).

According to the previous result, Assumption 2.1 is valid under mild require-
ments on densities f and g, and it is interesting to observe that if conditions (i)–(iii)
in Lemma 2.1 do not hold, then identifiability may fail.

Example 2.1. Let the symmetric densities f and g be such that f(x) = 0 for
x ∈ [−1, 1], whereas g(x) = 0 for |x| > 1. In this case, it is not difficult to see
that the general density ρ(·;λ) ∈ S(f, g) satisfies ρ(·;λ) = ρ(·; 1) for λ ≥ 1, and
ρ(·;λ) = ρ(·;−1) when λ ≤ −1, so that Assumption 2.1 does not hold.

The basic consequence of Assumption 2.1, which plays a central role in the
subsequent development, is established in the following lemma. Firstly, recall that
G(·) is increasing and notice that if λ2 > λ1 then

∫ ∞

0

f(x)|G(λ2x)−G(λ1x)| dx =
∫ ∞

0

f(x)(G(λ2x)−G(λ1x)) dx,
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and
∫ 0

−∞
f(x)|G(λ2x)−G(λ1x)| dx =

∫ 0

−∞
f(x)(G(λ1x)−G(λ2x)) dx

=
∫ ∞

0

f(x)(G(λ2x)−G(λ1x)) dx,

where the second equality comes from
∫

IR
f(x)G(λix) dx = 1/2 for i = 1, 2, so that

∫

R

f(x)|G(λ2x)−G(λ1x)| dx(2.3)

= 2
∫ ∞

0

f(x)(G(λ2x)−G(λ1x)) dx

= 2
∫ 0

−∞
f(x)(G(λ1x)−G(λ2x)) dx, λ1 < λ2.

Lemma 2.2. Under the identifiability Assumption 2.1, the following assertions (i)
and (ii) hold:
(i) For each λ ∈ IR,

∫∞
0
f(x)G(λx) dx > 0 and

∫ 0

−∞ f(x)G(λx) dx > 0.
(ii) There exists a function c : IR→ (0,∞) such that

Pλ[X1 < −c(λ)] > 0 and Pλ[X1 > c(λ)] > 0, λ ∈ IR.

Proof. (i) Notice that

0 ≤
∫ ∞

0

f(x)G(λ1x) dx ≤
∫ ∞

0

f(x)G(λ2x) dx, λ1 < λ2,

since G(·) is increasing. Now, suppose that
∫∞

0
f(x)G(λ2x) dx = 0 for some λ2 ∈ IR.

In this case the above display yields
∫∞

0
f(x)G(λ1x) dx = 0 for every λ1 ≤ λ2, and

then, ∫

R

f(x)|G(λ2x)−G(λ1x)| dx = 0, λ1 ≤ λ2,

by the first equality in (2.3), contradicting Assumption 2.1; consequently,∫∞
0
f(x)G(λx) dx > 0 for all λ ∈ IR, whereas the other part of the conclusion can

be obtained along similar lines.
(ii) By the monotone convergence theorem, as ε ↘ 0,

∫∞
ε
f(x)G(λx) dx ↗∫∞

0
f(x)G(λx) dx and

∫ −ε
−∞ f(x)G(λx) dx ↗

∫ 0

−∞ f(x)G(λx) dx for each λ. There-
fore, by part (i), there exists c(λ) > 0 such that

∫∞
c(λ)

f(x)G(λx) dx > 0 and
∫ −c(λ)

−∞ f(x)G(λx) dx > 0, and the conclusion follows.

3. Existence of Maximum Likelihood Estimators

The objective of this section is to establish the existence of a sequence of maximum
likelihood estimators, an idea that is formally stated below. To begin with, given a
fixed sample size n > 0, for each possible sample x = (x1, . . . , xn) ∈ IRn define the
average (kernel log-)likelihood function Ln(·; x) by

(3.1) Ln(λ; x) :=
1
n

n∑

k=1

`(λ;xk) =
1
n

n∑

k=1

log(G(λxk)), λ ∈ IR,

imsart-coll ver. 2008/08/29 file: Cavazos.tex date: April 10, 2009



282 Cavazos–Cadena and González–Faŕıas
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(see (1.1) and (1.4)), where the usual convention log(0) := −∞ is enforced. Since
G(·) is continuous and takes values in [0, 1], Ln(·; ·) is continuous function from
IR× IRn into [−∞, 0]; moreover, for every Q ⊂ {1, 2, . . . , n}

(3.2) Ln(λ; x) ≤ 1
n

∑

i :i∈Q
log(G(λxi)) ≤ 0, λ ∈ IR, ∅ 6= Q.

Definition 3.1. Let {λn : IRn → IR} be a sequence of (Borel) measurable functions
and set

λ̂n := λn(Xn
1 ).

In this case, {λ̂n} is a sequence of maximum likelihood of estimators of λ if

(3.3) Pλ0

[ ∞⋃

n=1

∞⋂

k=n

[Lk(λ̂k;Xk
1 ) ≥ Lk(λ;Xk

1 ) for all λ]

]
= 1, λ0 ∈ IR.

Remark 3.1. (i) By continuity, Ln(λ̂n;Xn
1 ) ≥ Ln(λ;Xn

1 ) occurs for every λ ∈ IR if
and only if it holds for each rational number, so that [Ln(λ̂n;Xn

1 ) ≥ Ln(λ;Xn
1 ), λ ∈

IR] is an event.
(ii) In words, {λ̂n} is a sequence of maximum likelihood estimators of λ if, with
probability 1 and regardless of the true parameter value, λ̂n maximizes the observed
average likelihood function Ln(·;Xn

1 ) whenever n is large enough. The event within
brackets in (3.3) is the inferior limit of the events [Lk(λ̂k;Xk

1 ) ≥ Lk(λ;Xk
1 ), λ ∈

IR], and when (3.3) holds then, as k →∞, Pλ0 [Lk(λ̂k;Xk
1 ) ≥ Lk(λ;Xk

1 ) for all λ]→
1 ; see, for instance, Billingsley (1995, Section 4).

The main objective of this section is to prove the following result.

Theorem 3.1. Under Assumption 2.1, there exists a sequence of maximum likeli-
hood estimators of λ.

The proof of this theorem has been divided into three simple lemmas involving
the following notation: For each x ∈ IRn, set

(3.4) mn(x) := sup
λ∈IR

Ln(λ; x),

so that (3.1) and (3.2) lead to

(3.5) 0 ≥ mn(x) ≥ Ln(0; x) = − log(2), x ∈ IRn,

since G(0) = 1/2. Next, define

(3.6) Mn(x) := {ν ∈ IR |Ln(ν; x) = mn(x)}, x ∈ IRn,

which is a closed subset of IR, by the continuity of Ln(·; x). As can be seen from
the monotonicity of `(·;x), the set Mn(x) may be empty if the observed sample
x ∈ IRn does not contain observations of different sign. The first step to the proof of
Theorem 3.1 is the following lemma, showing thatMn(x) is nonempty and compact
if x ∈ IRn contains components with opposite signs. For each integer n ≥ 2, set

(3.7) Sn := {x ∈ IRn |xixj < 0 for some i and j with 1 ≤ i 6= j ≤ n}

and observe that Sn is an open subset of IRn.
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Lemma 3.1. For each integer n ≥ 2 and x ∈ Sn, the set of maximizers Mn(x) is
nonempty and compact.

Proof. Given x ∈ Sn, select indexes i∗ and j∗ such that xi∗ < 0 and xj∗ > 0, so
that limλ→∞ log(G(λxi∗)) = −∞ = limλ→−∞ log(G(λxj∗)). After setting Q = {i∗}
and Q = {j∗} in (3.2), these convergences yield that

lim
|λ|→∞

Ln(λ; x) = −∞,

and it follows that the set Mn(x)—consisting of the maximizers of the continuous
function Ln(·; x)—is nonempty and compact.

Next, for each n ≥ 2, define λ+
n : Sn → IR by

(3.8) λ+
n (x) := maxMn(x), x ∈ Sn, .

so that λ+
n (x) is the largest element in Mn(x). Observe that λ+

n (x) ∈ Mn(x) is a
well-defined finite number for each x ∈ Sn, by Lemma 3.1. As it is shown below,
this function λ+

n (·) is upper semi-continuous.

Lemma 3.2. Let the integer n ≥ 2 be arbitrary but fixed, and suppose that {xk} ⊂
Sn is such that limk→∞ xk = y ∈ Sn. In this context,
(i) If νk ∈Mn(xk) for each k, then sequence {νk} is bounded, and
(ii) Every limit point of {νk} belongs to Mn(y).
Consequently,
(iii) λ+

n (·) is upper semi-continuous.

Proof. To begin with, write xk = (xk1, . . . , xkn) and notice that, since νk ∈Mn(xk),

(3.9)
1
n

n∑

i=1

log(G(λxki)) = Ln(λ; xk) ≤ Ln(νk; xk) =
1
n

n∑

i=1

log(G(νkxki)),

for ever λ ∈ IR; in particular,

(3.10) − log(2) = Ln(0; xk) ≤ 1
n

n∑

i=1

log(G(νkxki)).

(i) Assume now that lim supk→∞ νk = ∞ and, taking a subsequence if necessary,
without loss of generality suppose that νk → ∞. In this context, select an in-
dex i∗ such that yi∗ < 0, which is possible since y ∈ Sn (see (3.7)) and observe
that the convergence xki∗ → yi∗ < 0 leads to νkxki∗ → −∞ as k → ∞, so that
log(G(νkxki∗)→ −∞, and then, via (3.2) with Q = {i∗}, this yields

lim
k→∞

1
n

n∑

i=1

log(G(νkxki) = −∞,

which contradicts (3.10); it follows that lim supk νk < ∞, whereas the inequality
lim infk νk > −∞ can be established along similar lines.
(ii) Let ν∗ be an arbitrary limit point of {νk}, and notice that, by part (i), ν∗

is finite; selecting a subsequence, if necessary, assume that νk → ν∗. In this case,
taking the limit as k goes to ∞ in (3.9), it follows that

Ln(λ; y) =
1
n

n∑

i=1

log(G(λyk)) ≤ 1
n

n∑

i=1

log(G(ν∗yk)) = Ln(ν∗; y), λ ∈ IR,
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i.e., ν∗ ∈Mn(y).
(iii) Let y ∈ Sn be arbitrary. If {xk} ⊂ Sn is such that limk xk = y, recalling
that λ+

n (xk) ∈ Mn(xk), part (ii) with νk = λ+
n (xk) yields that lim supk λ+

n (xk) ∈
Mn(y), and then lim supk λ+

n (xk) ≤ λ+
n (y), by (3.8), so that λ+

n (·) is upper semi-
continuous.

The last step before the proof of Theorem 3.1 is the following consequence of
Lemma 2.2(i).

Lemma 3.3. Under Assumption 2.1,

lim
n→∞

Pν

[ ∞⋂

k=n

[Xk
1 ∈ Sk]

]
= 1, ν ∈ IR;

see (1.5) for notation.

Proof. Let ν ∈ IR be fixed and observe that for every i = 1, 2, . . . ,

Pν [Xi ≤ 0] = 1− Pν [Xi > 0] = 1− 2
∫ ∞

0

f(x)G(νx) dx =: ρ−(ν) ∈ [0, 1),

where the inclusion stems from Lemma 2.2(i), so that for each k > 0, ρ−(ν)k =
Pν [Xi ≤ 0, 1 ≤ i ≤ k]; similarly, Pν [Xi ≥ 0, 1 ≤ i ≤ k] = ρ+(ν)k for some
ρ+(ν) ∈ [0, 1). Since

[Xk
1 ∈ Sk]c = [Xi ≤ 0, 1 ≤ i ≤ k] ∪ [Xi ≥ 0, 1 ≤ i ≤ k],

it follows that Pν
[
[Xk

1 ∈ Sk]c
]
≤ 2ρ(ν)k, where ρ(ν) ∈ [0, 1) is given by ρ(ν) :=

max{ρ−(ν), ρ+(ν)}. Observing that (1.5) and (3.7) together yield that [Xn
1 ∈ Sn] ⊂

[Xk
1 ∈ Sk] for k ≥ n, it follows that

Pν

[ ∞⋂

k=n

[Xk
1 ∈ Sk]

]
≥ Pν [Xn

1 ∈ Sn] ≥ 1− 2ρ(ν)n

and the conclusion is obtained taking the limit as n→∞.

Notice that the last display and Lemma 3.1 together shows that, with probability
increasing to 1 at a geometric rate, the function Ln(·;Xn

1 ) has a maximizer when
n is large enough.

Proof of Theorem 3.1. Select a point λ∗ ∈ IR and for each positive integer k
define λk : IRk → IR as follows: λ1(·) ≡ λ∗, whereas, for k ≥ 2, λk(x) := λ∗ if
x ∈ IRk \ Sk, and λk(x) := λ+

k (x) if x ∈ Sk. Since the Sk’s are open sets, Lemma
3.2(iii) implies that each function λk(·) is measurable, and then λ̂k = λk(Xk

1 ) is a
genuine statistic. Using (3.4)–(3.6) and (3.8), this specification yields [Xk

1 ∈ Sk] ⊂
[Lk(λ̂k;Xk

1 ) ≥ Lk(λ;Xk
1 ), λ ∈ IR] for k ≥ 2. Therefore, for each integer m ≥ 2,

∞⋂

k=m

[Xk
1 ∈ Sk] ⊂

∞⋂

k=m

[Lk(λ̂k;Xk
1 ) ≥ Lk(λ;Xk

1 ), λ ∈ IR]

⊂
∞⋃

n=1

∞⋂

k=n

[Lk(λ̂k;Xk
1 ) ≥ Lk(λ;Xk

1 ), λ ∈ IR],
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a relation that yields that, for every parameter ν,

Pν

[ ∞⋃

n=1

∞⋂

k=n

[Lk(λ̂k;Xk
1 ) ≥ Lk(λ;Xk

1 ), λ ∈ IR]

]
≥ Pν

[ ∞⋂

k=m

[Xk
1 ∈ Sk]

]
.

After taking the limit as m→∞, an application of Lemma 3.3 leads to

Pν

[ ∞⋃

n=1

∞⋂

k=n

[Lk(λ̂k;Xk
1 ) ≥ Lk(λ;Xk

1 ), λ ∈ IR]

]
= 1, ν ∈ IR,

so that, by Definition 3.1, {λ̂n} is a sequence of maximum likelihood estimators.

4. Consistency

The objective of this section is to show that a sequence {λ̂n} of maximum likelihood
estimators of λ is consistent, i.e., that {λ̂n} converges to the true parameter value
with probability 1.

Theorem 4.1. Suppose that Assumption 2.1 holds and let {λ̂n} be a sequence of
maximum likelihood estimators. In this context,

Pν

[
lim
n→∞

λ̂n = ν
]

= 1, ν ∈ IR.

The proof of this result relies on the two lemmas stated below and involves
the following notation: Throughout the remainder of the section {λ̂n} is a given
sequence of maximum likelihood estimators of λ and the event Ω∗ is given by

(4.1) Ω∗ :=
∞⋃

n=1

∞⋂

k=n

[Lk(λ̂k;Xk
1 ) ≥ Lk(λ;Xk

1 ), λ ∈ IR].

Also, for each ν ∈ IR,

Ω−ν :=

[
lim
n→∞

1
n

n∑

i=1

I[Xi ≤ −c(ν)] = Pν [X ≤ −c(ν)]

]
,

(4.2)

Ω+
ν :=

[
lim
n→∞

1
n

n∑

i=1

I[Xi ≥ c(ν))] = Pν [X ≥ c(ν)]

]
,

where c(ν) > 0 is as in Lemma 2.2(ii). Notice that the strong law of large numbers
and Definition 3.1 yield

(4.3) Pν [Ω∗] = Pν [Ω+
ν ] = 1 = Pν [Ω−ν ] ν ∈ IR.

The core of the proof of Theorem 4.1 is the following boundedness property.

Lemma 4.1. Under Assumption 2.1, if {λ̂n} is a sequence of maximum likelihood
estimators of λ, then

Pν [lim sup
n→∞

|λ̂n| <∞] = 1, ν ∈ IR.
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Proof. It will be shown, by contradiction, that the event

(4.4) [lim sup
n→∞

λ̂n =∞] ∩ Ω∗ ∩ Ω−ν is empty.

To achieve this goal, suppose that the sample trajectory X1, X2, . . . is such that
the above intersection occurs, and observe that along this path assertions (a)–(c)
below hold:
(a) Since the event [lim supn λ̂n = ∞] occurs when X1, X2, . . . is observed, there
exist a (trajectory dependent) subsequence {nk} such that

nk ≥ k and λ̂nk
≥ k

for all positive integers k;
(b) Using that X1, X2, . . . is such that Ω∗ occurs, it follows that λ̂n maximizes
Ln(·;Xn

1 ) for n large enough, so that there exists a positive integer M such that

Ln(λ̂n;Xn
1 ) ≥ Ln(0;Xn

1 ) = − log(2), n ≥M ;

(c) Since the observation of X1, X2, . . . implies that Ω−ν occurs,

1
n

n∑

i=1

I[Xi ≤ −c(ν)]→ Pν [X1 ≤ −c(ν)] as n→∞.

Notice now that for each integer M1 > M and k > M1, (a) and (b) together yield

− log(2) ≤ Lnk
(λ̂nk

;Xnk
1 ) =

1
nk

nk∑

i=1

log(G(λ̂nk
Xi))

≤ 1
nk

nk∑

i=1

log(G(λ̂nk
Xi))I[Xi ≤ −c(ν)]

≤ 1
nk

nk∑

i=1

log[G(−M1c(ν))]I[Xi ≤ −c(ν)]

where (3.2) with Q = {i : i ≤ nk, Xi ≤ −c(ν)} was used to set the second
inequality, and the third one follows from the monotonicity of log(G(·)), since λnk

>
k > M1. From this point, letting k go to ∞, (c) leads to

− log(2) ≤ log(G(−M1c(ν)))Pν [X1 ≤ −c(ν)];

and, recalling that limx→−∞ log(G(x)) = −∞ and that Pν [X1 ≤ −c(ν)] and
c(ν) are both positive (by Lemma 2.2(ii)), taking the limit as M1 → ∞, it fol-
lows that − log(2) ≤ −∞, which is a contradiction, establishing (4.4). Therefore,
[lim supn→∞ λ̂n =∞] ⊂ (Ω∗)c ∪ (Ω−ν )c, inclusion that yields

Pν [lim sup
n→∞

λ̂n =∞] = 0, ν ∈ IR,

by (4.3). Similarly, it can be established that [lim infn→∞ λ̂n = −∞] ⊂ (Ω∗)c ∪
(Ω+

ν )c, so that Pν [lim infn→∞ λ̂n = −∞] = 0 for all ν ∈ IR; the conclusion follows
combining this fact with the above display.

To continue, observe that since log(G(·)) ≤ 0, Eν [log(G(λX1))] is always a well-
defined non positive number, where the expectation may assume the value −∞.
Also, since x 7→ x log(x) is bounded on (0, 1), Eν [log(G(νx))] =∫

IR
2 log(G(νx))G(νx)f(x) dx is finite.
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Lemma 4.2. Suppose that Assumption 2.1 holds and let ν ∈ IR be arbitrary but
fixed.
(i) [Kullback’s inequality.] For each λ ∈ IR \ {ν},

Eν [log(G(λX1))] < Eν [log(G(νX1))].

(ii) Assume that {rk} and {sk} are two real sequences such that, for some ν∗ ∈ IR,

rk ↘ ν∗ and sk ↗ ν∗ as k →∞.

and suppose that, for every k = 1, 2, 3, . . ., the following inequality holds:

Eν [log(G(νX))](4.5)
≤ Eν [log(G(rkX))I[X ≥ 0]] + Eν [log(G(skX))I[X < 0]].

In this case, ν = ν∗.

Proof. (i) If λ 6= ν, Assumption 2.1 and the strict concavity of the logarithmic
function yield, via Jensen’s inequality, that

∫

IR

log
(
ρ(x;λ)
ρ(x; ν)

)
ρ(x; ν) dx < log

(∫

IR

ρ(x;λ)
ρ(x; ν)

ρ(x; ν) dx
)

= log
(∫

IR

ρ(x;λ) dx
)

= 0.

Observing that ρ(x;λ)/ρ(x; ν) = G(λx)/G(νx) when ρ(x; ν) is positive, the above
inequality can be written as Eν [log(G(λX1))− log(G(νX1))] < 0, which yields the
desired conclusion since, as already noted, Eν [log(G(νX1))] is finite.
(ii) Notice that rk ↘ ν∗ leads to rkX ↘ ν∗X on [X ≥ 0], whereas sk ↗ ν∗

implies that skX ↘ ν∗X on [X < 0]. Therefore, since − log(G(·)) is decreasing and
nonnegative,

0 ≤ − log(G(rkX))I[X ≥ 0]↗ − log(G(ν∗X))I[X ≥ 0]

and
0 ≤ − log(G(skX))I[X < 0]↗ − log(G(ν∗X))I[X < 0].

Now, an application of the monotone convergence theorem yields

Eν [log(G(rkX))I[X ≥ 0]]↘ Eν [log(G(ν∗X))I[X ≥ 0]]

and
Eν [log(G(skX))I[X < 0]]↘ Eν [log(G(ν∗X))I[X < 0]],

convergences that, after taking the limit as k goes to ∞ in (4.5), lead to

Eν [log(G(νX))] ≤ Eν [log(G(ν∗X))],

and then ν = ν∗, by part (i).

After these preliminaries, the proof of Theorem 4.1 is presented below. The ar-
gument uses the following notation, where Q stands for the set of rational numbers:
For each ν ∈ IR, define
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(4.6) Ω0
ν :=

[
lim
n→∞

1
n

n∑

i=1

log(G(νXi)) = Eν [log(G(νX1))

]
;

Ω1
ν :=

[
lim
n→∞

1
n

n∑

i=1

log(G(λXi))I[Xi ≥ 0](4.7)

= Eν [log(G(λX1))I[X1 ≥ 0]], λ ∈ Q
]
,

and

Ω2
ν :=

[
lim
n→∞

1
n

n∑

i=1

log(G(λXi))I[Xi < 0](4.8)

= Eν [log(G(λX1))I[X1 < 0]], λ ∈ Q
]
.

Since Q is denumerable, the strong law of large numbers yields Pν [Ωiν ] = 1 for
i = 0, 1, 2, and then, setting

(4.9) Ων = Ω0
ν ∩ Ω1

ν ∩ Ω2
ν ,

it follows that

(4.10) Pν [Ων ] = 1.

Proof of Theorem 4.1. Given ν ∈ IR, it is sufficient to show that

(4.11)
[
lim sup

n
|λ̂n| <∞

]
∩ Ω∗ ∩ Ων ⊂

[
lim
n
λ̂n = ν

]
,

where Ω∗ and Ων are specified in (4.1) and (4.9), respectively. Indeed, if this inclu-
sion is valid, then (4.3), (4.10) and Lemma 4.1 together imply that Pν [limn λ̂n =
ν] = 1. To establish (4.11) let X1, X2, X3, . . . be a fixed trajectory such that[
lim supn |λ̂n| <∞

]
∩ Ω∗ ∩ Ων occurs, select an arbitrary limit point ν∗ of the

associated sequence {λ̂n}, and observe the following facts (a)–(c):
(a) ν∗ is finite, since lim supn |λ̂n| <∞ holds when X1, X2, X3, . . . is observed. Let
r and s be arbitrary rational numbers satisfying

(4.12) s < ν∗ < r

and select a sequence {nk} of positive integers such that

(4.13) nk > k, s < λ̂nk
< r, k = 1, 2, . . . .

(b) Since the path X1, X2, X3, . . . is such that Ω∗ occurs, λ̂n is a maximizer of
Ln(·;Xn

1 ) when n is large enough, say n > M ; see (4.1). In particular, Ln(ν;Xn
1 ) ≤
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Ln(λ̂n;Xn
1 ) when n > M , and then, replacing n by nk in this inequality and using

the monotonicity of log(G(·)) as well as (4.13), it follows that

1
nk

nk∑

i=1

log(G(νXi)) = Lnk
(ν;Xnk

1 )

≤ Lnk
(λ̂nk

;Xnk
1 )

=
1
nk

nk∑

i=1

log(G(λ̂nk
Xi))

≤ 1
nk

nk∑

i=1

log(G(rXi))I[Xi ≥ 0](4.14)

+
1
nk

nk∑

i=1

log(G(sXi))I[Xi < 0], k > M.

(c) Since the trajectory X1, X2, . . . is such that Ων occurs, a glance to (4.6)–(4.9)
immediately yields that, as k →∞,

1
nk

nk∑

i=1

log(G(νXi)) → Eν [log(G(νX))],

1
nk

nk∑

i=1

log(G(rXi))I[Xi ≥ 0] → Eν [log(G(rX)I[X ≥ 0]], and

1
nk

nk∑

i=1

log(G(sXi))I[Xi < 0] → Eν [log(G(sX)I[X < 0]].

After taking the limit as k →∞ in (4.14), these convergences yield that

Eν [log(G(νX))] ≤ Eν [log(G(rX)I[X ≥ 0]] + Eν [log(G(sX)I[X < 0]],

and then, since r and s are arbitrary rational numbers satisfying (4.12), from Lemma
4.2(ii) it follows that ν∗ = ν. In short, it has been proved that along an arbitrary
path X1, X2, . . . for which the intersection

[
lim supn |λ̂n| <∞

]
∩ Ω∗ ∩ Ων occurs,

the corresponding sequence {λ̂n} has ν as its unique limit point, so that λ̂n → ν as
n→∞. This establishes (4.11) and, as already noted, completes the proof.

5. Asymptotic Distribution

The remainder of the paper concerns the asymptotic behavior of a consistent se-
quence {λ̂n} of maximum likelihood estimators of λ, whose existence is guaranteed
by Assumption 2.1. As already mentioned, the large sample properties of {λ̂n} will
be studied under the null hypothesis H0 : λ = 0, and the analysis below requires
two properties on the densities g and f generating the family S(f, g), namely, (i)
smoothness of density g outside of {0} and a ‘good’ behavior of its derivatives
around λ = 0, and (ii) a moment-dominance condition involving both densities f
and g. After a formal presentation of these assumptions, the main result is stated
at the end of the section, and the corresponding proof is given after establishing
the necessary technical preliminaries.
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Assumption 5.1. For some nonnegative integer r—hereafter referred to as the
critical order— the following conditions hold:
(i) The symmetric density g(x) is continuous on IR and has derivatives up to order
2r + 2 on the interval (0,∞);
(ii) Dkg(0+) = limx↘0D

kg(x) exists and is finite for k = 0, 1, 2, . . . , 2r + 1, and
(iii) Drg(0+) 6= 0, whereas Dsg(0+) = 0 for 0 ≤ s < r.

Remark 5.1. (i) Under this Assumption, g(·) statisfies that
Drg(0+) = limx↘0 r!g(x)/xr ≥ 0, by continuity of g if r = 0, or by L’Hopital’s
rule, if r > 0, so that Drg(0+) > 0, since Drg(0+) is no null. It follows that a
density g satisfying Assumption 5.1 can be expressed as g(x) = |x|rh(|x|) where r
is a nonnegative integer (the critical order), h : [0,∞)→ [0,∞) is continuous with
h(0) > 0, and has derivatives of order up to 2r + 2 on (0,∞), which are ‘well-
behaved’ near zero so that the required lateral limits of the derivatives of g exist
at x = 0. Thus, besides the smoothness requirement on the whole interval (0,∞),
the core of Assumption 5.1 essentially concerns the local behavior of g around the
origin.
(ii) Under Assumption 5.1, density g(·) is continuous, so that G(·) has continuous
derivative, and then ∂λ`(λ;x) = ∂λ log(G(λx)) exists if `(λ;x) is finite. Suppose now
that λ̂n maximizes Ln(·;Xn

1 ). In this case − log(2) = Ln(0;Xn
1 ) ≤ Ln(λ̂n;Xn

1 ) im-
plies that log(G(λ̂nXi) is finite for every i = 1, 2, . . . , n, by (3.1), so that Ln(·;Xn

1 )
is differentiable at λ̂n, and then the likelihood equation holds: ∂λLn(λ̂n;Xn

1 ) = 0.

By symmetry, Assumption 5.1 yields that g(·) also has derivatives up to order
2r+ 2 on the interval (−∞, 0); indeed, if k ≤ 2r+ 2 then Dkg(x) = (−1)kDkg(−x)
for x 6= 0, so that

(5.1) Dkg(0−) = lim
x↗0

Dkg(x) = (−1)kDkg(0+), k = 0, 1, 2, . . . , 2r + 1,

and the nullity ofDkg(0+) for 0 ≤ k < r implies that g has null (bilateral) derivative
at x = 0 of any order less that r. On the other hand, under Assumption 5.1 the
cumulative distribution function G in (1.1) has derivatives up to order 2r + 3 on
IR \ {0}, and using the relation DkG(x) = Dk−1g(x) for x 6= 0 and k > 0 it follows
that

(5.2) DkG(0) = 0, 1 ≤ k < r + 1

and

(5.3) DkG(0+) = Dk−1g(0+), DkG(0−) = Dk−1g(0−), r + 1 ≤ k ≤ 2r + 2.

Next, define

(5.4) H(x) := log(G(x)), x ∈ IR,

and observe the equalities

`(λ;x) = H(λx), x ∈ IR,(5.5)
∂kλ`(λ;x) = DkH(λx)xk, x 6= 0, 1 ≤ k ≤ 2r + 3

see (1.4). It follows that the lateral limits of ∂kλ`(·;x) at zero are given by

(5.6) ∂kλ`(0+;x) =
{
DkH(0+)xk, if x > 0;
DkH(0−)xk, if x < 0.

imsart-coll ver. 2008/08/29 file: Cavazos.tex date: April 10, 2009



Inference for Skew Symmetric Families 291

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

and

(5.7) ∂kλ`(0−;x) =
{
DkH(0−)xk, if x > 0;
DkH(0+)xk, if x < 0.

The analysis below uses (lateral) Taylor expansions of order 2r + 2 for Ln(·;Xn
1 )

around zero, and it is necessary to have an integrable bound for the residual as
well as finite second moments for the coefficients. For this reason, the following
conditions will be enforced.

Assumption 5.2. Conditions (i) and (ii) below hold, where r is the the critical
order in Assumption 5.1:
(i) E0[X1|4r+2] =

∫
IR
x4r+2f(x) dx <∞;

(ii) There exists a function W : IR→ [0,∞) and δ > 0 such that

(5.8) |∂2r+3
λ `(λ; ·)| ≤W (·), 0 < |λ| ≤ δ, and

∫

IR

W (x)f(x) dx <∞.

Remark 5.2. The moment requirement in Assumption 5.2(i) concerns only density
f , whereas the dominance condition in the second part involves a relation between
g and f . Using (5.4), it can be shown by induction that, for x 6= 0, DkH(x) is a
polynomial in Dsg(x)/G(x), s = 0, 1, 2, . . . , k − 1, and then, setting

Mr := max{|Dkg(x)|/G(x) : 0 ≤ k ≤ 2r + 2, x 6= 0},
via (5.5) it follows that there exists a constant B such that |∂2r+3

λ `(λ, x)| ≤
BMr|x|2r+3 so that, if Mr < ∞, then Assumption 5.2 holds entirely if the mo-
ment condition in part (i) is valid. It is not difficult to see that Mr is finite when
there exists x0 > 0 for which (a) or (b) below occur:
(a) g(x) is a rational function for x > x0, as it is the case if g(·) is a multiple of a
t-density for x large enough;
(b) g(x) = p(x)e−βx on (x0,∞), where β is a positive constant and p(x) is a
polynomial or, more generally, a linear combination of terms of the form xs; this
occurs, for instance, when g(·) is proportional to a mixture of gamma densities on
(x0,∞).

To state the result on the large sample distribution of maximum likelihood esti-
mators, set

(5.9) Vr+1 := 4
(
Drg(0+)
(r + 1)!

)2

E0

[
X2r+2

1

]
> 0

which, as it will be shown later, is the variance of ∂r+1
λ `(0+, Xi)/(r + 1)! ; for the

strict inequality, see Remark 5.1(i).

Theorem 5.1. Let {λ̂n} be a consistent sequence of maximum likelihood estimators
of λ, and suppose that Assumptions 5.1 and 5.2 hold. In this context, under the
hypothesis H0 : λ = 0, the following convergences (i) and (ii) occur as n → ∞,
where r is the critical order in Assumption 5.1, and Z is a random variable with
standard normal distribution:

(i) (nVr+1)1/(2(r+1))
λ̂n

d−→|Z|1/(r+1)sign(Z),

and

(ii) 2n[Ln(λ̂n;Xn
1 )− Ln(0;Xn

1 )] d−→Z2.
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Remark 5.3. (i) Suppose that the critical index r is null. In this case Theorem
5.1 (i) yields that (nV1)1/2

λ̂n
d−→|Z|sign(Z) d=Z. This conclusion coincides with

that obtained from the general classical results presented, for instance, in Lehmann
and Casella (1998, Section 6.3), or Shao (1999, Section 4.4), where derivatives up
to order 2 are required for g(·) around zero; under Assumption 5.1, only the lateral
limits of Dg and D2g exist at zero.
(ii) Suppose that the critical order r is positive and that g(·) has (bilateral) derivative
of order r at zero, so that Drg(0+) = Drg(0−). Since Drg(0+) 6= 0 it follows from
(5.1) that r is an even integer, and g(·) has derivatives up to order r on the real
line. Thus, setting s = r + 1, s is odd, `(·;x) has derivatives up to order s on IR,
and ∂kλ`(0; ·) = 0 for 1 ≤ k < s, whereas ∂sλ`(0, x) 6= 0 for x 6= 0. If, among other
conditions, g(·) has derivatives up to order 2s at zero, an application of Theorem 1
in Rotnitzky et al. (2000) yields the conclusions in Theorem 5.1; notice, however,
that Assumption 5.1 only ensures the existence of the lateral limits Dkg(0±) for
s < k ≤ 2s, so that Theorem 5.1 extends Theorem 1 in Rotnitzky et al. (2000) to
the framework of this work.

The rather technical proof of Theorem 5.1, requiring some explicit computations
for the lateral limits ∂kλ`(0±;x) in terms of density g(·), will be given after the
preliminaries established in the following section.

6. Technical Preliminaries

This section is dedicated to establish the basic tools that will be used to prove
Theorem 5.1, namely, lateral Taylor expansions around the origin for the average
likelihood Ln(·;Xn

1 ) and its first derivative; via the absolute value function, such
expansions are stated below as single equations. The following notation will be used:

(6.1) ∆(x) := ∂r+1
λ `(0−;x)− ∂r+1

λ `(0+;x), x ∈ IR.

Theorem 6.1. Suppose that Assumptions 5.1 and 5.2 hold. In this case, the asser-
tions (i)—(iii) below occur, where r is the critical order in Assumption 5.1, δ > 0
and W (·) are as in Assumption 5.2, and

∆n :=
1
n

n∑

i=1

∆(Xi);

see (6.1).
(i) For each positive integer n and α ∈ (−δ, δ),

Ln(α;Xn
1 )− Ln(0;Xn

1 )

= |α|rα
{

2r+1∑

k=r+1

∂kλLn(0+;Xn
1 )

k!
|α|k−r−1

+

(
∂2r+2
λ Ln(0+;Xn

1 ) + ∆nI(−∞,0)(α)
(2r + 2)!

+
W ∗n(α)

(2r + 3)!
α

)
|α|rα

}
,(6.2)
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and

∂λLn(α,Xn
1 )

= |α|r
{

2r∑

k=r

∂k+1
λ Ln(0+;Xn

1 )
k!

|α|k−r

+

(
∂2r+2
λ Ln(0+;Xn

1 ) + ∆nI(−∞,0)(α)
(2r + 1)!

+
W̃n(α)

(2r + 2)!
α

)
|α|rα

}
,(6.3)

where the random variables W ∗n(α) and W̃n(α) satisfy

(6.4) |W ∗n(α)|, |W̃n(α)| ≤Wn :=
1
n

n∑

i=1

W (Xi).

(ii) Under H0 : λ = 0 for each k = r + 1, . . . , 2r + 1, the following convergences
hold as n→∞:

(6.5)
√
n ∂kλLn(0+;Xn

1 ) d−→N (0, vk), where vk = E0

[(
∂kλ`(0+;X1)

)2]
,

whereas

(6.6) ∆n → 0 and 2
∂2r+2
λ Ln(0+;Xn

1 )
(2r + 2)!

→ −Vr+1 P0-a.s.;

see (5.9).

The proof of this theorem relies on explicit formulas for ∂kλ`(0±;x) in terms of
density g(·) and, in this direction, the following lemma concerning the lateral limits
at zero of the derivatives of function H(·) in (5.4) will be useful.

Lemma 6.1. Suppose that Assumption 5.1 holds. In this case, the lateral limits at
0 of the derivatives of function H(·) in (5.4) satisfy the following relations (i)–(iii):
(i) DkH(0+) = DkH(0−) = 0, 1 ≤ k < r + 1;
(ii) If r + 1 ≤ k < 2r + 2, then

DkH(0+) = 2Dk−1g(0+) and DkH(0−) = 2Dk−1g(0−).

(iii) D2r+2H(0+) = 2D2r+1g(0+)− 1
2

(
2r + 2
r + 1

)(
Dr+1H(0+)

)2
,

and

D2r+2H(0−) = 2D2r+1g(0−)− 1
2

(
2r + 2
r + 1

)(
Dr+1H(0−)

)2
.

Proof. Recalling that the distribution function G(x) is continuous and has deriva-
tives up to order 2r+ 3 on IR\{0}; from (5.4) it follows that G(x)DH(x) = DG(x)
and, via Leibinitz’ formula,

G(x)DkH(x) +
k−1∑

i=1

(
k − 1
i

)
DiG(x)Dk−iH(x) = DkG(x)
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for x 6= 0 and 2 ≤ k ≤ 2r + 3; since G(·) is continuous and G(0) = 1/2, taking
lateral limit as x approaches to zero these equalities lead to

DH(0±) = 2DG(0)

and, for 2 ≤ k ≤ 2r + 2,

DkH(0±) + 2
k−1∑

i=1

(
k − 1
i

)
DiG(0±)Dk−iH(0±) = 2DkG(0±).

Since DkG(0±) = 0 when 1 ≤ k ≤ r, by (5.2), these relations yield DkH(0±) = 0
for 1 ≤ k ≤ r, establishing part(i), as well as

(6.7) Dr+1H(0±) = 2Dr+1G(0±),

and

(6.8)

for r + 1 < k ≤ 2r + 2,

DkH(0±) + 2
k−1∑

i=r+1

(
k − 1
i

)
DiG(0±)Dk−iH(0±) = 2DkG(0±).

To prove part (ii), select an integer k such that r + 1 < k < 2r + 2. In this case, if
k > i ≥ r+ 1 then 1 ≤ k− i < r+ 1, and then Dk−iH(0±) = 0, by part (i), so that
the summation in the above display is null. Therefore, DkH(0±) = 2DkG(0±), and
combining this with (6.7) it follows that

DkH(0±) = 2DkG(0±), r + 1 ≤ k < 2r + 2,

equalities that yield part (ii) via (5.3). To conclude, observe that if k = 2r+ 2 then
2r+ 1 ≥ i > r+ 1 implies that 1 ≤ k− i < r+ 1, and in this case Dk−iH(0±) = 0,
by part (i), so that the terms in the summation in (6.8) with k = 2r + 2 are null
when i > r + 1. Consequently,

D2r+2H(0±) + 2
(

2r + 1
r + 1

)
Dr+1G(0±)Dr+1H(0±) = 2D2r+2G(0±);

since
2Dr+1G(0±) = 2Drg(0±) = Dr+1H(0±)

and D2r+2G(0±) = D2r+1g(0±), by (5.3) and part (ii), respectively, the conclusion

follows observing that
(

2r + 1
r + 1

)
= 2−1

(
2r + 2
r + 1

)
.

The expressions in the previous lemma are used below to determine the lateral
limits of ∂kλ`(·;x) at zero in terms of density g(·).
Lemma 6.2. Under Assumption 5.1, assertions (i)–(v) below hold:
(i) ∂kλ`(0+; ·) = 0 = ∂kλ`(0−; ·) for 1 ≤ k ≤ r.
(ii) For each x ∈ IR and r + 1 ≤ k < 2r + 2,

∂kλ`(0+;x) = 2Dk−1g(0+)|x|k−1x,

∂kλ`(0−;x) = 2Dk−1g(0−)|x|k−1x.

(iii) ∂kλ`(0−;x) = (−1)k−1∂kλ`(0+;x) for r + 1 ≤ k < 2r + 2 and x ∈ IR.
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(iv) For each x ∈ IR

∂2r+2
λ `(0+;x) = 2D2r+1g(0+)|x|2r+1x(6.9)

−1
2

(
2r + 2
r + 1

)(
∂r+1
λ `(0+;x)

)2
,

and

∂2r+2
λ `(0−;x) = 2D2r+1g(0−)|x|2r+1x(6.10)

−1
2

(
2r + 2
r + 1

)(
∂r+1
λ `(0−;x)

)2
.

Consequently,
(v) The difference between ∂2r+2

λ `(0−;x) and ∂2r+2
λ `(0+;x) is given by

(6.11) ∆(x) = −4D2r+1g(0+) |x|2r+1x, x ∈ IR;

see (6.1).

Proof. From Lemma 6.1(i), part (i) follows via (5.6) and (5.7), whereas these latter
equalities and Lemma 6.1(ii) together yield that, for r + 1 ≤ k ≤ 2r + 1, (a) and
(b) below hold:
(a) For x ≥ 0,

∂kλ`(0+;x) = 2Dk−1g(0+)xk and ∂kλ`(0−;x) = 2Dk−1g(0−)xk;

(b) If x < 0,

∂kλ`(0+;x) = 2Dk−1g(0−)xk

= 2Dk−1g(0+)(−1)k−1xk = 2Dk−1g(0+)|x|k−1x,
∂kλ`(0−;x) = 2Dk−1g(0+)xk

= 2Dk−1g(0−)(−1)k−1xk = 2Dk−1g(0−)|x|k−1x,

where (5.1) was used to set the second equalities. These facts (a) and (b) together
lead to part (ii), which implies part (iii) via (5.1). To establish part (iv), notice that
Lemma 6.1(iii) and (5.6) together imply that
For x ≥ 0

∂2r+2
λ `(0+;x) = 2D2r+1g(0+)x2r+2 − 1

2

(
2r + 2
r + 1

)(
Dr+1H(0+)xr+1

)2

= 2D2r+1g(0+)x2r+2 − 1
2

(
2r + 2
r + 1

)(
∂r+1
λ `(0+;x)

)2
,

showing that (6.9) holds for x ≥ 0, whereas combining Lemma 6.1(iii) with relations
(5.6) and (5.1) it follows that if x < 0, then

∂2r+2
λ `(0+;x)

= 2D2r+1g(0−)x2r+2 − 1
2

(
2r + 2
r + 1

)(
Dr+1H(0−)xr+1

)2

= 2D2r+1g(0+)(−1)2r+1x2r+1x− 1
2

(
2r + 2
r + 1

)(
∂r+1
λ `(0+;x)

)2

= 2D2r+1g(0+)|x|2r+1x− 1
2

(
2r + 2
r + 1

)(
∂r+1
λ `(0+;x)

)2
,
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and then (6.9) also holds for x < 0. Equality (6.10) can be established along similar
lines and, finally, observing that ∂r+1

λ `(0+;x) and ∂r+1
λ `(0−;x) have the same ab-

solute value, by part (iii), via part (iv), (6.11) follows immediately from (5.1) and
(6.1).

Next, the above expressions will be used to write lateral Taylor expansions for
`(·;x) and ∂λ`(·;x) around the origin.

Lemma 6.3. Suppose that Assumptions 5.1 and 5.2 hold. In this case, the following
expansions are valid for x ∈ IR and α ∈ (−δ, δ) \ {0}:

`(α, x)− `(0;x)

= |α|rα
{

2r+1∑

k=r+1

∂kλ`(0+;x)
k!

|α|k−r−1

+

(
∂2r+2
λ `(0+;x) + I(−∞,0)(α)∆(x)

(2r + 2)!
+
W ∗(α, x)
(2r + 3)!

α

)
|α|rα

}
,

and

∂λ`(α, x)

= |α|r
{

2r∑

k=r

∂k+1
λ `(0+;x)

k!
|α|k−r

+

(
∂2r+2
λ `(0+;x) + I(−∞,0)(α)∆(x)

(2r + 1)!
+
W̃ (α, x)
(2r + 2)!

α

)
|α|rα

}
,

where ∆(·) is as in (6.1), and

(6.12) |W ∗(α, x)|, |W̃ (α, x)| ≤W (x).

Proof. Select α0 6= 0 with the same sign as α and |α0| < |α|, so that the closed
interval joining α0 and α is contained in (−δ, δ) \ {0}. Since `(·;x) has derivatives
up to order 2r + 3 outside 0, there exist points α∗ and α̃ between α0 and α such
that the following Taylor expansions hold:

(6.13) `(α, x)− `(α0;x) =
2r+2∑

k=1

∂kλ`(α0;x)
k!

(α− α0)k +
∂2r+3
λ `(α∗;x)
(2r + 3)!

(α− α0)2r+3,

and

(6.14) ∂λ`(α, x) =
2r+1∑

k=0

∂k+1
λ `(α0;x)

k!
(α− α0)k +

∂2r+3
λ `(α̃;x)
(2r + 2)!

(α− α0)2r+2,

where

(6.15)
∣∣∂2r+3
λ `(α∗;x)

∣∣ ,
∣∣∂2r+3
λ `(α̃;x)

∣∣ ≤W (x),

by Assumption 5.2(ii). Next, the conclusions in the lemma will be obtained taking
lateral limits as α0 goes to zero. Recall that `(·;x) is continuous and consider the
following exhaustive cases:
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Case 1: α > 0. taking the limit as α0 decreases to zero, the above displayed
relations and Lemma 6.2(i) together yield

`(α, x)− `(0;x)

=
2r+2∑

k=r+1

∂kλ`(0+;x)
k!

αk +
W ∗(α;x)
(2r + 3)!

α2r+3

=
2r+1∑

k=r+1

∂kλ`(0+;x)
k!

αk +
∂2r+2
λ `(0+;x)
(2r + 2)!

α2r+2 +
W ∗(α;x)
(2r + 3)!

α2r+3

= αr+1

{
2r+1∑

k=r+1

∂kλ`(0+;x)
k!

αk−r−1

+
(
∂2r+2
λ `(0+;x)
(2r + 2)!

+
W ∗(α;x)
(2r + 3)!

α

)
αr+1

}
,

and

∂λ`(α;x) =
2r+1∑

k=r

∂k+1
λ `(0+;x)

k!
αk +

W̃ (α;x)
(2r + 2)!

α2r+2

=
2r∑

k=r

∂k+1
λ `(0+;x)

k!
αk +

∂2r+2
λ `(0+;x)
(2r + 1)!

α2r+1 +
W̃ (α;x)
(2r + 2)!

α2r+2

= αr

{
2r∑

k=r

∂k+1
λ `(0+;x)

k!
αk−r

+

(
∂2r+2
λ `(0+;x)
(2r + 1)!

+
W̃ (α;x)
(2r + 2)!

α

)
αr+1

}
,

where W ∗(α, x) is given by W ∗(α, x) := limα0↘0 ∂
2r+3
λ `(α∗;x) and, similarly,

W̃ (α, x) := limα0↘0 ∂
2r+3
λ `(α̃;x), so that

|W ∗(α, x)|, |W̃ (α, x)| ≤W (x),

by (6.15); since α is positive, so that I(−∞,0)(α) = 0, these last three displays are
equivalent to (6.12)–(6.12).
Case 2: α < 0. In this context, taking the limit as α0 increases to zero in (6.13)
and (6.14), Lemma 6.2(i) yields that

`(α, x)− `(0;x) =
2r+2∑

k=r+1

∂kλ`(0−;x)
k!

αk +
W ∗(α;x)
(2r + 3)!

α2r+3

and

∂λ`(α;x) =
2r+1∑

k=r

∂k+1
λ `(0−;x)

k!
αk +

W̃ (α;x)
(2r + 2)!

α2r+2

where, analogously to the previous case, W ∗(α, x) := limα0↗0 ∂
2r+3
λ `(α∗;x) and

W̃ (α, x) := limα0↗0 ∂
2r+3
λ `(α̃;x) so that, again, (6.15) implies that (6.12) is valid.

Observe now that Lemma 6.2(iii) allows to write

2r+2∑

k=r+1

∂kλ`(0−;x)
k!

αk +
W ∗(α;x)
(2r + 3)!

α2r+3
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=
2r+1∑

k=r+1

∂kλ`(0+;x)
k!

(−1)k−1αk +
∂2r+2
λ `(0−;x)
(2r + 2)!

α2r+2 +
W ∗(α;x)
(2r + 3)!

α2r+3

=
2r+1∑

k=r+1

∂kλ`(0+;x)
k!

|α|k−1α+
(
∂2r+2
λ `(0−;x)
(2r + 2)!

+
W ∗(α;x)
(2r + 3)!

α

)
(|α|rα)2

= |α|rα
{

2r+1∑

k=r+1

∂kλ`(0+;x)
k!

|α|k−r−1

+
(
∂2r+2
λ `(0−;x)
(2r + 2)!

+
W ∗(α;x)
(2r + 3)!

α

)
|α|rα

}

and
2r+1∑

k=r

∂k+1
λ `(0−;x)

k!
αk +

W̃ (α;x)
(2r + 2)!

α2r+2

=
2r∑

k=r

∂k+1
λ `(0+;x)

k!
(−1)kαk +

∂2r+2
λ `(0−;x)
(2r + 1)!

α2r+1 +
W̃ (α;x)
(2r + 2)!

α2r+2

=
2r∑

k=r

∂k+1
λ `(0+;x)

k!
|α|k + |α|r

(
∂2r+2
λ `(0−;x)
(2r + 1)!

+
W̃ (α;x)
(2r + 2)!

α

)
|α|rα

= |α|r
{

2r∑

k=r

∂k+1
λ `(0+;x)

k!
|α|k−r

+

(
∂2r+2
λ `(0−;x)
(2r + 1)!

+
W̃ (α;x)
(2r + 2)!

α

)
|α|rα

}
;

using that ∂2r+2
λ `(0−;x) = ∂2r+2

λ `(0+;x) + I(−∞,0)(α)∆(x), by (6.1), the last four
displays together yield that (6.12) and (6.12) are also valid for α < 0.

After the above preliminaries, the main result of this section can be established
as follows.

Proof of Theorem 6.1. (i) Since Ln(·;Xn
1 ) is the average of `(·;Xi), i =

1, 2, . . . , n, by Lemma 6.3 the two indicated expansions hold with

W ∗n(α) =
1
n

n∑

i=1

W ∗(α,Xi) and W̃n(α) =
1
n

n∑

i=1

W̃ (α,Xi),

so that (6.4) is satisfied, by (6.12).
(ii) Under H0 : λ = 0, Xi has symmetric distribution around zero with finite
moment of order 4r + 2, by Assumption 5.2(i), so that a random variable of the
form |Xi|k−1Xi has zero expectation and finite second moment when 1 ≤ k < 2r+2.
Thus, from Lemma 6.2, for all k = r + 1, . . . 2r + 1,

E0[∂kλ`(0+;Xi)] = 0 and E0[(∂kλ`(0+;Xi))2] = vk <∞,

as well as E0[∆(X1)] = 0. From this point, (5.9) and (6.9) together yield

2
(2r + 2)!

E[∂2r+2
λ `(0+;Xi)] = −

(
1

(r + 1)!

)2

E[(∂r+1
λ `(0+;Xi))2]

= −4
(
Drg(0+)
(r + 1)!

)2

E[X2r+2
i ] = −Vr+1.
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where Lemma 6.2(ii) was used to set the second equality (notice that this shows
that Vr+1 is the variance of ∂r+1

λ `(0+;Xi)/(r + 1)!). Now, (6.5) and (6.6) follow
from the central limit theorem and the strong law of large numbers, respectively.

7. Proof of Theorem 5.1

After the previous preliminaries, Theorem 5.1 is finally established in this section.
The core of the argument has been decoupled into two lemmas showing that, under
H0 : λ = 0, along a consistent sequence {λ̂n} of maximum likelihood estimators,
(i) the expansions in Theorem 6.1 can be simplified substantially, and (ii) that λ̂n
is no null that with probability converging to 1.

Lemma 7.1. Suppose that Assumptions 5.1 and 5.2 hold and let {λ̂n} be a con-
sistent sequence of maximum likelihood estimators of λ. In this case, assertions (i)
and (ii) below occur under the null hypothesis H0 : λ = 0.
(i) On the event [ |λ̂n| < δ], the following expressions are valid:

Ln(λ̂n;Xn
1 )− Ln(0;Xn

1 )(7.1)

= λ̂n|λ̂n|r
[
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+An −
Bn
2
λ̂n|λ̂n|r

]
,

and

(7.2)
∂λLn(λ̂n;Xn

1 )
r + 1

= |λ̂n|r
[
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+ Ãn − B̃nλ̂n|λ̂n|r
]
,

where

(7.3) An = Op

(
λ̂n√
n

)
, Ãn = Op

(
λ̂n√
n

)
,

and

(7.4) lim
n→∞

Bn = lim
n→∞

B̃n = Vr+1 P0-a.s.

(ii) Consequently,

2n[Ln(λ̂n;Xn
1 )− Ln(0;Xn

1 )]

= 2nλ̂n|λ̂n|r
[
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+An −
Bn
2
λ̂n|λ̂n|r

]
+ op(1).

Proof. (i) Setting

An :=
2r+1∑

k=r+2

∂kλLn(0+;Xn
1 )

k!
|λ̂n|k−r−1

and

Bn := −
(

2∂2r+2
λ Ln(0+;Xn

1 ) + 2∆nI(−∞,0)(λ̂n)
(2r + 2)!

+
2W ∗n(λ̂n)
(2r + 3)!

λ̂n

)
,
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(7.1) is equivalent to (6.2) with α = λ̂n. Similarly, defining

Ãn :=
1

r + 1

2r∑

k=r+1

∂k+1
λ Ln(0+;Xn

1 )
k!

|λ̂n|k−r

and

B̃n := − 1
r + 1

(
∂2r+2
λ Ln(0+;Xn

1 ) + ∆nI(−∞,0)(λ̂n)
(2r + 1)!

+
W̃n(λ̂n)
(2r + 2)!

λ̂n

)

= −
(

2∂2r+2
λ Ln(0+;Xn

1 ) + 2∆nI(−∞,0)(λ̂n)
(2r + 2)!

+
W̃n(λ̂n)

(r + 1)(2r + 2)!
λ̂n

)

it follows that (7.2) is equivalent to (6.3) with α = λ̂n. Therefore, since (6.2) and
(6.3) are valid for |α| < δ, (7.1) and (7.2) hold on the event [ |λ̂n| < δ]. To conclude,
it will be shown that (7.3) and (7.4) are satisfied. First, notice that An and Ãn
defined above are null for r = 0, so that (7.3) certainly occurs in this case. On the
other hand, if r > 0, then convergences (6.5) established in Theorem 6.1(ii) yield
that ∂kλLn(0+;Xn

1 ) = Op(1/
√
n) for r+1 ≤ k < 2r+1 and then (7.3) follows, since

the above expressions for An and Ãn involve factors |λ̂n|s with s ≥ 1 and

(7.7) P0[λ̂n → 0] = 1,

by consistency. Next, observe that

|W ∗n(λ̂n)|, |W̃n(λ̂n)| ≤Wn =
1
n

n∑

i=1

W (Xi),

by (6.4), and then the strong law of large numbers and Assumption 5.2(ii) yield
that

lim sup
n→∞

|W ∗n(λ̂n)|, lim sup
n→∞

|W̃n(λ̂n)| ≤
∫

IR

W (x)f(x), dx <∞ P0-a.s.,

so that
lim
n→∞

W ∗n(λ̂n)λ̂n = 0 = lim
n→∞

W̃n(λ̂n)λ̂n P0-a.s.,

by (7.7). From this point, (6.6) in Theorem 6.1(ii) and the specifications of Bn and
B̃n lead to (7.4).
(ii) Since expansion (7.1) is valid on [ |λ̂n| < δ], the conclusion follows from (7.7).

Lemma 7.2. Suppose that Assumptions 5.1 and 5.2 are valid, let {λ̂n} be a se-
quence of maximum likelihood estimators of λ, and define

Ω∗∗n :=
[
Ln(λ̂n;Xn

1 ) ≥ Ln(λ;Xn
1 ), λ ∈ IR

]
∩
[
∂r+1
λ Ln(0+;Xn

1 ) 6= 0
]
.

With this notation, assertions (i) and (ii) below occur.
(i) λ̂n 6= 0 on Ω∗∗n .
Consequently,
(ii) P0[λ̂n 6= 0]→ 1 as n→∞.
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Proof. (i) The expansion for Ln(·;Xn
1 )− Ln(0;Xn

1 ) in Theorem 6.1(i) yields that

lim
α→0

Ln(α;Xn
1 )− Ln(0;Xn

1 )
|α|rα = ∂r+1

λ Ln(0+;Xn
1 ).

It follows that if ∂r+1
λ Ln(0+;Xn

1 ) > 0, then Ln(α;Xn
1 ) − Ln(0;Xn

1 ) > 0 when α
is positive and small enough, whereas if ∂r+1

λ Ln(0+;Xn
1 ) < 0, then Ln(α;Xn

1 ) −
Ln(0;Xn

1 ) > 0 when α < 0 and |α| is sufficiently small. Thus, ∂r+1
λ Ln(0+;Xn

1 ) 6= 0
implies that 0 is not a maximizer of Ln(·;Xn

1 ), so that, if λ̂n maximizes the average
likelihood Ln(·;Xn

1 ) and ∂r+1
λ Ln(0+;Xn

1 ) 6= 0 then λ̂n is no null, i.e., Ω∗∗n ⊂ [λ̂n 6=
0].
(ii) Since Drg(0+) 6= 0, it follows that ∂r+1

λ `(0+;Xi) = 2Drg(0+)|Xi|rXi has a
density, and then their average ∂r+1

λ Ln(0+;Xn
1 ) is absolutely continuous. It follows

that P0[∂r+1
λ Ln(0+;Xn

1 ) 6= 0] = 1, and then P0[Ω∗∗n ] → 1, by Definition 3.1 (see
Remark 3.1(ii)) and, via part (i), the conclusion follows.

Proof of Theorem 5.1. Suppose that Assumptions 5.1 and 5.2 hold, that the
hypothesis H0 : λ = 0 occurs, and let {λ̂n} be a consistent sequence of maximum
likelihood estimators. In this context, define

Ωn,∗ :=
[
Ln(λ̂n;Xn

1 ) ≥ Ln(λ;Xn
1 ), λ ∈ IR

]
∩
[

0 < |λ̂n| < δ
]
,

and notice that the conclusions in Lemma 7.1 occur on this event, since Ωn,∗ ⊂
[ |λ̂| < δ]. Also, the consistency of {λ̂n}, Definition 3.1 and Lemma 7.2(ii) together
imply that

(7.8) lim
n→∞

P0[Ωn,∗] = 1.

Observe now that, on the event Ωn,∗, the estimator λ̂n is no null and maximizes
Ln(·;Xn

1 ), so that the likelihood equation ∂λLn(λ̂n;Xn
1 ) = 0 holds; see Remark

5.1(ii). Via (7.2) it follows that

On Ωn,∗, B̃n
√
nλ̂n|λ̂n|r =

√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+
√
nÃn,

and then, from (7.8)

B̃n
√
nλ̂n|λ̂n|r =

√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+
√
nÃn + op(1)

=
√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+Op(λ̂n) + op(1)

=
√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+ op(1)

where (7.3) was used to set the second equality, and the third one stems from
P0[λ̂n → 0] = 1, by consistency; via (6.5) this yields that B̃n

√
nλ̂n|λ̂n|r = Op(1),

and then (7.4) leads to

(7.9) Vr+1

√
n λ̂n|λ̂n|r =

√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+ op(1).
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(i) Using that
√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

d−→N (0, Vr+1) (see (5.9) and (6.5)), the above

display yields

(7.10)
√
nVr+1 λ̂n|λ̂n|r d−→Z where Z has standard normal distribution;

since the inverse of the function x 7→ x|x|r is the continuous mapping x 7→ |x|1/(r+1)

sign(x), it follows that

(nVr+1)1/(2(r+1))λ̂n
d−→|Z|1/(r+1)sign(Z).

(ii) Since
√
nλ̂n|λ̂n|r = Op(1), by part (i), Lemma 7.1(ii), (7.3), (7.4) and (7.9)

together yield

2n[Ln(λ̂n;Xn
1 )− Ln(0;Xn

1 )]

= 2nλ̂n|λ̂n|r
[
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+An −
Bn
2
λ̂n|λ̂n|r

]
+ op(1)

= 2
√
nλ̂n|λ̂n|r

[√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+
√
nAn −

Bn
2
√
nλ̂n|λ̂n|r

]
+ op(1)

= 2
√
nλ̂n|λ̂n|r

[√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

+Op(λ̂n)

− Vr+1 + op(1)
2

√
nλ̂n|λ̂n|r

]
+ op(1)

= 2
√
nλ̂n|λ̂n|r

[√
n
∂r+1
λ Ln(0+;Xn

1 )
(r + 1)!

− Vr+1

2
√
nλ̂n|λ̂n|r

]
+ op(1)

= 2
√
nλ̂n|λ̂n|r

[
Vr+1

√
nλ̂n|λ̂n −

Vr+1

2
√
nλ̂n|λ̂n|r

]
+ op(1)

=
(√

nVr+1 λ̂n|λ̂n|r
)2

+ op(1);

together with (7.10), this yields that 2n[Ln(λ̂n;Xn
1 ) − Ln(0;Xn

1 )] d−→Z2, com-
pleting the proof.
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Parametric Mixture Models for

Estimating the Proportion of True Null

Hypotheses and Adaptive Control of FDR

Ajit C. Tamhane1 and Jiaxiao Shi2

Northwestern University

Abstract: Estimation of the proportion or the number of true null hypothe-
ses is an important problem in multiple testing, especially when the number
of hypotheses is large. Wu, Guan and Zhao (2006) found that nonparamet-
ric approaches are too conservative. We study two parametric mixture models
(normal and beta) for the distributions of the test statistics or their p-values to
address this problem. The components of the mixture are the null and alterna-
tive distributions with mixing proportions π0 and 1 − π0, respectively, where
π0 is the unknown proportion to be estimated. The normal model assumes
that the test statistics from the true null hypotheses are i.i.d. N(0, 1) while
those from the alternative hypotheses are i.i.d. N(δ, 1) with δ 6= 0. The beta
model assumes that the p-values from the null hypotheses are i.i.d. U [0, 1] and
those from the alternative hypotheses are i.i.d. Beta(a, b) with a < 1 < b. All
parameters are assumed to be unknown. Three methods of estimation of π0 are
developed for each model. The methods are compared via simulation with each
other and with Storey’s (2002) nonparametric method in terms of the bias and
mean square error of the estimators of π0 and the achieved FDR. Robustness
of the estimators to the model violations is also studied by generating data
from other models. For the normal model, the parametric methods perform
better compared to Storey’s method with the EM method (Dempster, Laird
and Rubin 1977) performing best overall when the assumed model holds; how-
ever, it is not very robust to significant model violations. For the beta model,
the parametric methods do not perform as well because of the difficulties of
estimation of parameters, and Storey’s nonparametric method turns out to be
the winner in many cases. Therefore the beta model is not recommended for
use in practice. An example is given to illustrate the methods.
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1. Introduction

Suppose thatm null hypotheses,H01, . . . ,H0m, are to be tested against alternatives,
H11, . . . ,H1m. Let X1, . . . , Xm be the test statistics and p1, . . . , pm their p-values.
Throughout we assume that the Xi’s and hence the pi’s are mutually independent.
Suppose that some unknown number m0 of the hypotheses are true and m1 =
m−m0 are false. We wish to estimate m0 or equivalently the proportion π0 = m0/m
of the true hypotheses based on the Xi’s or equivalently the pi’s. The estimate m̂0 is
useful for devising more powerful adaptive multiple comparison procedures (MCPs)
to control an appropriate type I error rate, e.g., the familywise error rate (FWE)
(Hochberg and Tamhane 1987) in the Bonferroni procedure or the false discovery
rate (FDR) in the Benjamini and Hochberg (1995) procedure. These procedures
normally use the total number m as a conservative upper bound on the number of
true hypotheses. Adaptive procedures based on m̂0 are especially useful in large-
scale multiplicity testing problems arising in microarray data involving m of the
order of several thousands.

A number of methods have been proposed for estimating m0 starting with
Schweder and Spjøtvoll (1982); see, e.g., Hochberg and Benjamini (1990), Ben-
jamini and Hochberg (2000), Turkheimer, Smith and Schmidt (2001), Storey (2002),
Storey et al. (2004), Jiang and Doerge (2005) and Langaas et al. (2005). Many of
these methods reject the p-values that differ significantly from the null U [0, 1] distri-
bution as non-null and exclude them from the estimation process. Different formal
or graphical tests are used for this purpose. For example, consider Storey’s (2002)
method with a fixed λ-level test for a sufficiently large λ (e.g., λ = 0.5) to reject
any p-value ≤ λ as non-null. (It should be noted that λ is not fixed but is a tuning
parameter whose value is determined from the data to minimize the mean square
error of the estimate of π0 using bootstrap.) Let Nr(λ) = ](pi ≤ λ) denote the
number of rejected hypotheses and Na(λ) = ](pi > λ) the number of accepted
hypotheses at level λ ∈ (0, 1). If type II errors are ignored for a sufficiently large λ
then

(1.1) E[Na(λ)] ≈ m0(1− λ).

Storey’s (ST) estimator is given by

(1.2) π̂0(λ) =
Na(λ)

m(1− λ)
or m̂0(λ) =

Na(λ)
1− λ .

Schweder and Spjøtvoll’s (1982) method visually fits a straight line through the
origin to the plot of Na(p(i)) = m − i vs. 1 − p(i) (1 ≤ i ≤ m) for large values
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of the p(i). The slope of the fitted line is taken as an estimate of m0 according to
Equation (1.1). Because these estimators attribute all nonsignificant p-values to the
true null hypotheses (type II errors are ignored) and do not explicitly model the
non-null p-values, they tend to be positively biased which results in conservative
adaptive control of any type I error rate.

To get a handle on type II errors, so that both the null and non-null p-values can
be utilized to estimate π0, the mixture model approach has been proposed by several
authors. The mixture model differs from the setup given in the first paragraph in
that the number of true hypotheses is a random variable (r.v.) andm0 is its expected
value. Specifically, let Zi be a Bernoulli r.v. which equals 1 with probability π0 if
H0i is true and 0 with probability π1 = 1 − π0 if H0i is false. Assume that the
Zi (1 ≤ i ≤ m) are i.i.d. Then the number of false hypotheses, M0 =

∑m
i=1 Zi, is a

binomial r.v. with parameters m and π0, and E(M0) = m0 = mπ0.
A parametric mixture model was considered by Hsueh, Chen, and Kodell (2003)

(HCK). They assumed the following simple hypothesis testing setup. Suppose that
all m hypotheses pertain to the means of the normal distributions with H0i : µi = 0
versus H1i : µi > 0. (HCK considered a two-sided alternative, but that is not
germane to their method.) Conditional on Zi, the test statistic Xi ∼ N(δi, 1),
where δi is the standardized µi with δi = 0 if Zi = 1 and δi = δ > 0 if Zi = 0
where HCK assumed that δ is known. We refer to this model as the normal model,
which was also used by Black (2004) to study the bias of Storey’s (2002) estimator.
An expression for the expected number of Xi’s that are greater than any specified
threshold can be derived using this setup. By plotting the corresponding observed
number of Xi’s against the threshold, m0 could be estimated as the slope of the
straight line through the origin using least squares (LS) regression.

The normal model is the topic of Section 2. We first extend the HCK estimation
method to the unknown δ case, which is a nonlinear least squares (NLS) regression
problem. Next we note that the HCK method makes use of only the number of Xi’s
that are greater than a specified threshold; it does not make use of the magnitudes of
the Xi’s. Therefore we propose two alternative methods of estimation which utilize
the magnitudes of the Xi’s in an attempt to obtain a better estimate of δ and
thereby a better estimate of m0. The first of these alternative methods is similar
to the LS method of HCK, but uses the sample mean (instead of the number)
of the Xi’s that are greater than a specified threshold. We refer to it as the test
statistics (TS) method. The second method is the EM method of Dempster, Laird
and Rubin (1977) which finds the maximum likelihood estimators (MLEs) of the
mixture distribution of the Xi’s.

This normal mixture model approach in conjunction with the EM algorithm was
proposed by Guan, Wu and Zhao (2004) and most recently by Iyer and Sarkar
(2007). So, although the use of the EM algorithm for estimation in the context of
the present problem is not new, we perform a comprehensive comparison of it with
the other two new methods, and find that it performs best when the assumed model
is correct, but is not robust to model violations.

In the second approach discussed in Section 3, the non-null p-values are modeled
by a beta distribution with unknown parameters a and b (denoted by Beta(a, b)).
We refer to this model as the beta model. Here we restrict to estimation methods
based on p-values since the Xi’s can have different null distributions. All three
estimators (HCK, TS and EM) are also derived for the beta model.

We stress that both the normal and beta models are simply “working” models
intended to get a handle on type II errors. We do not pretend that these models are
strictly true. Therefore robustness of the estimators to the model assumptions is an
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important issue. In the simulation comparisons for the normal model, robustness of
the fixed δ assumption is tested by generating different δi’s for the false hypotheses
from a normal distribution. Robustness of the normal model assumption is tested by
generating pi’s for the false hypotheses using the beta model and transforming them
to the Xi’s using the inverse normal transformation. Similarly, the robustness of the
beta model is tested by generating Xi’s using the normal model and transforming
them to pi’s.

Adaptive control of FDR using different estimators of m0 is the topic of Sec-
tion 4. The ST, HCK, TS and EM estimators are compared in a large simulation
study in Section 5. The performance measures used in the simulation study are the
biases and mean square errors of the estimators of π0 and FDR. An example illus-
trating application of the proposed methods is given in Section 6. Conclusions are
summarized in Section 7. Proofs of some technical results are given in the Appendix.

2. Normal Model

The normal mixture model can be expressed as

(2.1) f(xi) = π0φ(xi) + π1φ(xi − δ),

where f(xi) is the p.d.f. of Xi and φ(·) is the p.d.f. of the standard normal distri-
bution. Although δ will need to be estimated, we are not too concerned about its
estimation accuracy since, after all, it is a parameter of a working model.

2.1. Hsueh, Chen, and Kodell (HCK) Method

Let

(2.2) β(δ, λ) = PH1i
{pi > λ} = PH1i

{Xi < zλ} = Φ
(
zλ − δ

)

denote the type II error probability of a test performed at level λ where Φ(·) is the
standard normal c.d.f. and zλ = Φ−1(1−λ). Then E[Nr(λ)] = m0λ+(m−m0)[1−
β(δ, λ)], and hence

(2.3) E[Nr(λ)]−mΦ
(
−zλ + δ

)
= m0[λ− Φ

(
−zλ + δ

)
].

For λ = p(i), i = 1, 2, . . . ,m, the term inside the square brackets in the R.H.S. of
the above equation is

(2.4) xi = p(i) − Φ
(
−zp(i) + δ

)

and the L.H.S. can be estimated by

(2.5) yi = i−mΦ
(
−zp(i) + δ

)
.

If δ is assumed to be known then we can calculate (xi, yi), i = 1, 2, . . . ,m, and using
(2.3) fit an LS straight line through the origin by minimizing

∑m
i=1(yi−m0xi)2 with

respect to (w.r.t.) m0. The LS estimator of m0 is given by

(2.6) m̂0 =
∑m

i=1 xiyi∑m
i=1 x

2
i

.
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We first extend the HCK estimator to the unknown δ case by incorporating
estimation of δ as part of the NLS problem of minimizing

∑m
i=1(yi −m0xi)2 w.r.t.

m0 and δ. The iterative algorithm for this purpose is given below. The initial values
for this algorithm as well as the algorithms for the TS and EM estimators were
determined by solving the following two moment equations for m0 and δ:

(2.7)
m∑

i=1

Xi = (m−m0)δ and
m∑

i=1

X2
i = m0 + (m−m0)(δ2 + 1).

HCK Algorithm
Step 0: Compute initial estimates m̂0 and δ̂ by solving (2.7). Let π̂0 = m̂0/m.
Step 1: Set δ = δ̂ and compute (xi, yi), i = 1, 2, . . . ,m, using (2.4) and (2.5).
Step 2: Compute m̂0 using (2.6) and π̂0 = m̂0/m.
Step 3: Find δ̂ to minimize

∑m
i=1(yi −m0xi)2.

Step 4: Return to Step 1 until convergence.

Remark: One could use weighted least squares to take into account the het-
eroscedasticity of the yi’s. We tried this, but the resulting NLS problem was com-
putationally much more intensive without a collateral gain in the efficiency of the
estimators.

2.2. Test Statistics (TS) Method

As noted in Section 1, we hope to improve upon the HCK estimator by utilizing
the information in the magnitudes of the Xi’s. Toward this end we first propose
an estimator analogous to the HCK estimator except that it uses the sample mean
(rather than the number) of the Xi’s that are significant at a specified level λ.

Define

Sa(λ) = {i : pi > λ} =
{
i : Xi < zλ

}
and Sr(λ) = {i : pi ≤ λ} =

{
i : Xi ≥ zλ

}
.

Then Na(λ) = |Sa(λ)| and Nr(λ) = |Sr(λ)|. Finally define

Xa(λ) =
1

Na(λ)

∑

i∈Sa(λ)

Xi and Xr(λ) =
1

Nr(λ)

∑

i∈Sr(λ)

Xi.

To derive the expected values of these sample means the following lemma is useful.

Lemma 1. Define

c0a(λ) = EH0i

(
Xi|Xi < zλ

)
, c0r(λ) = EH0i

(
Xi|Xi ≥ zλ

)
,

and
c1a(δ, λ) = EH1i

(
Xi|Xi < zλ

)
, c1r(δ, λ) = EH1i

(
Xi|Xi ≥ zλ

)
.

Then

c0a(λ) = −φ(zλ)
1− λ , c0r(λ) =

φ(zλ)
λ

and

c1a(δ, λ) = δ − φ(zλ − δ)
Φ(zλ − δ)

, c1r(δ, λ) = δ +
φ(δ − zλ)
Φ(δ − zλ)

. �
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Proof. The proof follows from the following expressions for the conditional expec-
tations of X ∼ N(µ, 1):

E(X|X ≤ x) = µ− φ(x− µ)
Φ(x− µ)

and E(X|X > x) = µ+
φ(µ− x)
Φ(µ− x)

.

The desired expected values of Xa(λ) and Xr(λ) are then given by the following
lemma.

Lemma 2. Let

(2.8) g(π0, δ, λ) = P
{
Zi = 1|Xi < zλ

}
=

π0(1− λ)
π0(1− λ) + π1Φ

(
zλ − δ

)

and

(2.9) h(π0, δ, λ) = P
{
Zi = 1|Xi ≥ zλ

}
=

π0λ

π0λ+ π1Φ
(
−zλ + δ

) .

Then

(2.10) E[Xa(λ)] = g(π0, δ, λ)c0a(λ) + [1− g(π0, δ, λ)]c1a(δ, λ)

and

(2.11) E[Xr(λ)] = h(π0, δ, λ)c0r(λ) + [1− h(π0, δ, λ)]c1r(δ, λ),

where c0a(λ), c0r(λ), c1a(δ, λ) and c1r(δ, λ) are as given in Lemma 1.

Proof. Given in the Appendix.

To develop an estimation method analogous to the HCK method note that from
(2.3) and (2.11) we get

(2.12)
E[Nr(λ)]E[Xr(λ)]−mΦ

(
−zλ + δ

)
c1r(δ, λ) = m0

[
λc0r(λ)− Φ

(
−zλ + δ

)
c1r(δ, λ)

]
.

For λ = p(i), i = 1, 2, . . . ,m, the term inside the square brackets in the R.H.S. of
the above equation is

(2.13) xi = p(i)c0r(p(i))− Φ
(
−zp(i) + δ

)
c1r(δ, p(i))

and the L.H.S. can be estimated by

yi = iXr(p(i))−mΦ
(
−zp(i) + δ

)
c1r(δ, p(i))

=
m∑

j=m−i+1

X(j) −mΦ
(
−zp(i) + δ

)
c1r(δ, p(i)).(2.14)

Then from (2.12) we see that a regression line of yi versus xi can be fitted through
the origin with slope m0 by minimizing

∑m
i=1(yi − m0xi)2 w.r.t. m0 and δ. The

algorithm to solve this NLS regression problem is exactly analogous to the HCK
algorithm.
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2.3. EM Method

Whereas the HCK and TS methods compute the LS estimators of π0 and δ (for
two different regression models), the EM method computes their MLEs. For these
MLEs to exist, it is necessary that π0 be bounded away from 0 and 1. The steps in
the EM algorithm are as follows.

EM Algorithm
Step 0: Compute initial estimates m̂0 and δ̂ by solving (2.7). Let π̂0 = m̂0/m.
Step 1 (E-step): Calculate the posterior probabilities:

π̂0(Xi) =
π̂0φ(Xi)

π̂0φ(Xi) + π̂1φ(Xi − δ̂)

and π̂1(Xi) = 1− π̂0(Xi), i = 1, 2, . . . ,m.
Step 2 (M-step): Calculate new estimates:

π̂0 =
∑m

i=1 π̂0(Xi)
m

and δ̂ =
∑m

i=1 π̂1(Xi)Xi∑m
i=1 π̂1(Xi)

.

Step 3: Return to Step 1 until convergence.

3. Beta Model

In many applications the normal model may be inappropriate because the test
statistics may not be normally distributed or different types of test statistics (e.g.,
normal, t, chi-square, Wlicoxon, log-rank) may be used to test different hypotheses
or only the p-values of the test statistics may be available. In these cases we use
the p-values to estimate π0.

We propose to model the non-null p-values by a Beta(a, b) distribution given by

g(p|a, b) =
Γ(a+ b)
Γ(a)Γ(b)

pa−1(1− p)b−1

with unknown parameters a and b with a < 1 and b > 1. This restriction is imposed
in order to ensure that g(p|a, b) is decreasing in p. It is well-known that the non-
null distribution of the p-values must be right-skewed and generally decreasing in
shape (see Hung, O’Neill, Bauer and Kohne 1997). Langaas et al. (2005) imposed
the same restriction in their nonparametric estimate of the non-null distribution of
p-values.

Of course, the null distribution of a p-value is Beta(1, 1), i.e., the U [0, 1] distri-
bution. As in the case of the normal model, the beta model can be represented as
a mixture model for the distribution of the pi:

(3.1) f(pi) = π0 × 1 + π1g(pi|a, b).

The parameters a and b must be estimated along with π0. This problem is analogous
to that encountered for the normal model with the difference that in addition to
π0, we have to estimate two parameters, a and b, instead of a single parameter δ.
We first extend the HCK method for the normal model discussed in Section 2.1 to
this beta model.
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3.1. Hsueh, Chen, and Kodell (HCK) Method

Denote the type II error probability of a test performed at level λ by

(3.2) β(a, b, λ) = PH1i
{pi > λ} =

Γ(a+ b)
Γ(a)Γ(b)

∫ 1

λ
pa−1(1− p)b−1dp = 1− Iλ(a, b),

where Iλ(a, b) is the incomplete beta function. Put

(3.3) xi = p(i) − Ip(i)(a, b) and yi = i−mIp(i)(a, b).

Then the HCK method amounts to solving the NLS problem of minimizing∑m
i=1(yi − m0xi)2 w.r.t. m0 and (a, b) (subject to a < 1 < b). Gauss-Newton

method (Gill et al. 1981) was used to perform minimization w.r.t. (a, b). The initial
starting values for this algorithm as well as the algorithms for the TS and EM
estimators described below were determined by solving the following three moment
equations for m0 and (a, b):

m∑

i=1

pi =
1
2
m0 +

a

a+ b
m1,

m∑

i=1

p2
i =

1
3
m0 +

a(a+ 1)
(a+ b)(a+ b+ 1)

m1,(3.4)

m∑

i=1

p3
i =

1
4
m0 +

a(a+ 1)(a+ 2)
(a+ b)(a+ b+ 1)(a+ b+ 2)

m1.

3.2. Test Statistics (TS) Method

Here the TS estimator is based on the average of the “accepted” or “rejected”
p-values defined as

pa(λ) =
1

Na(λ)

∑

i∈Sa(λ)

pi and pr(λ) =
1

Nr(λ)

∑

i∈Sr(λ)

pi.

Analogous to Lemma 1, we have the following lemma.

Lemma 3. Define

d0a(λ) = EH0i
(pi|pi > λ) , d0r(λ) = EH0i

(pi|pi ≤ λ) ,

and
d1a(a, b, λ) = EH1i

(pi|pi > λ) , d1r(a, b, λ) = EH1i
(pi|pi ≤ λ) .

Then we have

d0a(λ) =
λ+ 1

2
, d0r(λ) =

λ

2
and

d1a(a, b, λ) =
1− Iλ(a+ 1, b)

1− Iλ(a, b)
· a

a+ b
, d1r(a, b, λ) =

Iλ(a+ 1, b)
Iλ(a, b)

· a

a+ b
.
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Proof. Straightforward.

The next lemma gives E[pa(λ)] and E[pr(λ)]; its proof is exactly analogous to
that of Lemma 2.

Lemma 4. Let

g(π0, a, b, λ) = P {Zi = 1|pi > λ} =
π0(1− λ)

π0(1− λ) + π1[1− Iλ(a, b)]

and
h(π0, a, b, λ) = P {Zi = 1|pi ≤ λ} =

π0λ

π0λ+ π1Iλ(a, b)
.

Then

(3.5) E[pa(λ)] = g(π0, a, b, λ)d0a(λ) + [1− g(π0, a, b, λ)]d1a(a, b, λ)

and

(3.6) E[pr(λ)] = h(π0, a, b, λ)d0r(λ) + [1− h(π0, a, b, λ)]d1r(a, b, λ),

where d0a(λ), d0r(λ), d1a(a, b, λ) and d1r(a, b, λ) are as given in Lemma 3.

The equations for the TS estimator are derived as follows. Analogous to (2.12),
we obtain

E[Nr(λ)]E[pr(λ)]−mIλ(a, b)d1r(a, b, λ) = m0[λd0r(λ)− Iλ(a, b)d1r(a, b, λ)].

For λ = p(i), i = 1, 2, . . . ,m, the term in the square brackets in the R.H.S. of the
above equation equals

xi =
p2

(i)

2
− a

a+ b
Ip(i)(a+ 1, b)

and the L.H.S. can be estimated by

yi =
i∑

j=1

p(j) −
a

a+ b
Ip(i)(a+ 1, b).

The TS algorithm for the normal model can be modified to minimize
∑m

i=1(yi −
m0xi)2 by replacing the minimization with respect to δ by minimization with re-
spect to (a, b).

3.3. EM Method

The steps in the EM algorithm, which gives the MLEs of π0 and (a, b), are as fol-
lows. As in the case of the normal model, for these MLEs to exist, it is necessary
that π0 be bounded away from 0 and 1.

Step 0: Initialize m̂0 and (â, b̂) by solving (3.5). Let π̂0 = m̂0/m.
Step 1 (E-Step): Calculate the posterior probabilities:

π̂0(pi) =
π̂0

π̂0 + π̂1g(pi|â, b̂)
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and π̂1(pi) = 1− π̂0(pi), i = 1, 2, . . . ,m.
Step 2 (M-Step): Calculate â and b̂ as solutions of the equations (see Equa-
tions (21.1) and (21.2) in Johnson and Kotz 1970):

ψ(a)− ψ(a+ b) =
∑m

i=1 π̂1(pi) ln pi∑m
i=1 π̂1(pi)

,

ψ(b)− ψ(a+ b) =
∑m

i=1 π̂1(pi) ln(1− pi)∑m
i=1 π̂1(pi)

,

where ψ(·) is the digamma function (i.e., the derivative of the natural logarithm of
the gamma function). Also calculate

π̂0 =
∑m

i=1 π̂0(pi)
m

.

Step 3: Return to Step 1 until convergence.

4. Adaptive Control of FDR

We now discuss the use of the estimate m̂0 for adaptively controlling the FDR.
The control is assumed to be strong control (Hochberg and Tamhane 1987), i.e.,
FDR ≤ α for some specified α < 1 for all possible combinations of true and false
null hypotheses and the respective parameter values. Let R be the total number of
rejected hypotheses and let V be the number of true hypotheses that are rejected.
Benjamini and Hochberg (1995) introduced the definition

FDR = E

[
V

R

]
= E

[
V

R

∣∣∣∣R > 0
]
P (R > 0),

where 0/0 is defined as 0. Benjamini and Hochberg (1995) gave a step-up (SU)
procedure that controls FDR ≤ α.

Storey (2002) considered a single-step (SS) procedure (which he referred to as
the fixed rejection region method) that rejects H0i if pi ≤ γ for some common
fixed threshold γ. His focus was on estimating the FDR. He proposed the following
nonparametric estimator:

(4.1) F̂DRλ(γ) =
π̂0(λ)γ

{Nr(λ) ∨ 1}/m,

where π̂0(λ) is given by (1.2). The solution γ̂ to the equation F̂DRλ(γ) = α can
be used in an MCP that tests each hypothesis at the γ̂-level. Storey, Taylor and
Siegmund (2004, Theorem 3) have shown that this heuristic procedure (which uses
a slightly modified estimator of π0) controls the FDR. The heuristic procedures
proposed below along the same lines (which use parametric estimators of the FDR)
have not been rigorously shown to control the FDR.

We propose the following parametric estimator of the FDR:

(4.2) F̂DR(γ) =
π̂0γ

π̂0γ + π̂1[1− β(·, γ)]
,

where β(·, γ) is either β(δ̂, γ) given by (2.2) for the normal model or β(â, b̂, γ) given
by (3.2) for the beta model. To adaptively control the FDR at level α, we use
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the same heuristic procedure as above except that γ̂ is obtained by setting this
parametric estimator equal to α.

We may confine attention to α ≤ π0 since if α > π0 then one can choose γ̂ = 1,
and reject all hypotheses while still controlling the FDR = π0 < α. Existence and
uniqueness of γ̂ for α ∈ (0, π0] is proved in the following two lemmas for the normal
and beta models, respectively.

Lemma 5. For the normal model, the solution γ̂ to the equation F̂DR(γ) = α,
where F̂DR(γ) and β(δ̂, γ) are given by (4.2) and (2.2), respectively, exists and is
unique for α ∈ (0, π0].

Proof. Given in the Appendix.

Lemma 6. For the beta model, assuming 0 < â < 1 < b̂, the solution γ̂ to the
equation F̂DR(γ) = α, where F̂DR(γ) and β(δ̂, γ) are given by (4.2) and (3.2),
respectively, exists and is unique for α ∈ (0, π0].

Proof. Given in the Appendix.

To develop an adaptive FDR-controlling procedure for the normal mixture model,
Iyer and Sarkar (2007) took a somewhat different approach via the following asymp-
totic result of Genovese and Wasserman (2002): Assume that the pi are independent
U [0, 1] when the H0i are true and have a common distribution F when the H0i are
false. Then the nominal α-level Benjamini and Hochberg SU procedure is asymp-
totically (as m→∞) equivalent to Storey’s SS procedure that rejects H0i if pi ≤ γ̂
where γ̂ is the solution to the equation

F (γ) = ργ and ρ =
1− απ0

α(1− π0)
.

Furthermore, since the SU procedure actually controls the FDR conservatively at
π0α level, exact control at level α is achieved by replacing α in the expression for
ρ by α/π0, which results in the following equation for γ:

(4.3) F (γ) = ργ and ρ =
π0(1− α)
α(1− π0)

.

By writing F (γ) = 1 − β(·, γ), we see that F̂DR(γ) = α and (4.3) are identical if
π0 is replaced by π̂0 in (4.3). Iyer and Sarkar (2007) used the solution γ̂ from (4.3)
in Storey’s SS procedure with F (γ) = Φ(δ − zγ), and δ and π0 replaced by their
estimates δ̂ and π̂0 obtained from the EM method, which results in an adaptive
FDR-controlling procedure, which is identical to the one proposed before.

5. Simulation Results

We compared different estimators by conducting an extensive simulation study. The
ST estimator was used with λ = 0.5 throughout. The estimators were compared
in terms of their accuracy of estimation of π0 and control of FDR at a nominal
α = 0.10 using the SS procedure. The bias and mean square error (MSE) of the
estimators were used as the performance measures. The results for the normal model
are presented in Section 5.1 and for the beta model in Section 5.2. Throughout we
used m = 1000 and the number of replications was also set equal to 1000. We varied
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π0 from 0.1 to 0.9 in steps of 0.1. The values π0 = 0 and 1 were excluded because
π̂0 exhibits erratic results in these extreme cases; also FDR = 0 when π0 = 0.

In each simulation run, first the random indexes of the true and false hypotheses
were generated by generating Bernoulli r.v.’s Zi. Then the respective Xi’s or the
pi’s were generated using the appropriate null or alternative distributions. The bias
of each π̂0 estimator was estimated as the difference between the average of the
π̂0 values over 1000 replicates and the true value of π0. In the case of FDR, the
bias was estimated as the difference between the average of the F̂DR values over
1000 replicates and the nominal α = 0.10. The MSE was computed as the sum of
the square of the bias and the variance of the π̂0 (or F̂DR) values averaged over
1000 replicates. The detailed numerical results are given in Shi (2006); here we only
present graphical plots to save space.

5.1. Simulation Results for Normal Model

Simulations were conducted in three parts. In the first part, the true model for the
non-null hypotheses was set to be the same as the assumed model by generating the
Xi’s for the false hypotheses from a N(δ, σ2) distribution with a fixed δ = 2 and
σ = 1. In the other two parts of simulations, robustness of the assumed model was
tested by generating the Xi’s for the false hypotheses from different distributions
than the assumed one. In the second part, the Xi’s for the false hypotheses were
generated from N(δi, σ

2) distributions where the δi’s were themselves drawn from a
N(δ0, σ

2
0) distribution with δ0 = 2 and σ0 = 0.25 corresponding to an approximate

range of [1, 3] for the δi. In the third part, the pi’s for the false hypotheses were
generated from a Beta(a, b) distribution with a = 0.5 and b = 2, and the Xi’s were
computed using the inverse normal transformation Xi = Φ−1(1− pi).

Results for Fixed δ: The bias and the square root of the mean square error
(
√

MSE) of π̂0 for ST, HCK, TS and EM estimators are plotted in Fig. 1. Note
from Equation (2.3) that the bias of the ST estimator is given by

(5.1) Bias[π̂0(λ)] =
1− π0

1− λ Φ(zλ − δ).

Also, using the fact that Na(λ) has a binomial distribution with number of trials
m and success probability,

p = P{pi > λ} = π0(1− λ) + (1− π0)Φ(zλ − δ),

and using Equation (1.2) for π̂0(λ), we have

(5.2) Var[π̂0(λ)] =
p(1− p)
m(1− λ)2

.

These formulae were used to compute the bias and MSE of the ST estimator instead
of estimating them by simulation. Note that the bias of the ST estimator decreases
linearly in π0. The

√
MSE plot for the ST estimator is also approximately linear

because the bias is the dominant term in MSE. This is true whenever the alternative
is fixed for all false null hypotheses.

The TS estimator does not offer an improvement over the HCK estimator, as we
had hoped, and in fact performs slightly worse in terms of MSE for π0 ≤ 0.5. We sus-
pect that this result is due to the bias introduced when the term E[Nr(λ)]E[Xr(λ)]
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in Equation (2.12) is estimated by iXr(p(i)) for λ = p(i) because of the fact that
the product of the expected values does not equal the expected value of the product
of two dependent r.v.’s. The EM estimator has consistently the lowest bias and the
lowest MSE.
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Fig 1. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Fixed δ)

The bias and
√

MSE of F̂DR for ST, HCK, TS and EM estimators are plotted
in Fig. 2. We see that the ST estimator leads to a large negative bias which means
that, on the average, F̂DR is less than the nominal α = 0.10 resulting in conser-
vative control of FDR. The other three estimators yield approximately the same
level of control. Surprisingly, there is very little difference in the MSEs of the four
estimators. The EM estimator still is the best choice with the lowest bias and the
lowest MSE throughout the entire range of π0 values.
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Fig 2. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Fixed δ)
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Results for Random δ: The bias and
√

MSE of π̂0 and of F̂DR for ST, HCK, TS
and EM estimators are plotted in Figs. 3 and 4, respectively. By comparing these
results with those for fixed δ = 2, we see that, as one would expect, there is a slight
degradation in the performance of every estimator because the assumed model does
not hold. The comparisons between the four estimators here are similar to those
for fixed δ with the estimators ranked as EM > HCK > TS > ST.
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Fig 3. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Random δ)
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Fig 4. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Normal Model with Random δ)

Robustness Results for Data Generated by Beta Model: The bias and√
MSE of π̂0 and of F̂DR for ST, HCK, TS and EM estimators are plotted in

Figs. 5 and 6, respectively. Looking at Fig. 5 first, we see that the biases and MSEs
of all four estimators are an order of magnitude higher compared to the normal
model data which reflects lack of robustness.
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It is interesting to note that the EM estimator is no longer uniformly best for esti-
mating π0. In fact, the HCK estimator has a lower bias and MSE for 0.2 ≤ π0 ≤ 0.7.
The lack of robustness of the EM estimator is likely due to the strong dependence
of the likelihood methods on distributional assumptions. On the other hand, for the
least squares methods, the dependence on the assumed distribution is only through
its first moment and hence is less strong. As far as control of FDR is concerned,
there are not large differences between the proposed estimators. However, when
π0 = 0.9 the proposed estimators exceed the nominal FDR by as much as 0.05,
while the ST estimator still controls FDR conservatively. In conclusion, the HCK
estimator performs best for the middle range of π0 values.
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Fig 5. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Beta Model)
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Fig 6. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Normal Model (Data
Generated by Beta Model)
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5.2. Simulation Results for Beta Model

Results for Beta(0.5, 2) Data: In this case the non-null p-values were generated
from a Beta(a, b) distribution with a = 0.5, b = 2.0 and the null p-values were
generated from the U [0, 1] distribution. As before, the bias and variance of the ST
estimator were not estimated from simulations, but were computed using Equa-
tions (5.1) and (5.2) with Φ(zλ − δ) replaced by 1 − Iλ(a, b). Note that the bias
of the ST estimator decreases linearly in π0 in this case as well and

√
MSE de-

creases approximately linearly. From Fig. 7 we see that all estimators of π0, except
ST, have significant negative biases particularly over the interval [0.2, 0.5] and for
π0 ≥ 0.7, resulting in the achieved FDR significantly exceeding the nominal value
of α = 0.10 over the corresponding ranges of π0 as can be seen from Fig. 8. Com-
paring the results here with those for the normal model with the fixed δ case, we
see that the biases and MSEs of all estimators are an order of magnitude higher
in the present case. The reason behind this poor performance of the beta model
probably lies in the difficulty of estimating the parameters a, b of the beta distri-
bution. Only the ST estimator controls FDR conservatively and has the smallest
MSE for 0.2 ≤ π0 ≤ 0.7. Thus the ST estimator has the best performance since it
is a nonparametric estimator (and the performance would be even better if λ is not
fixed, but is used as a tuning parameter). In other words, the benefits of using a
parametric model are far outweighed by the difficulty of estimating the parameters
of the model resulting in less efficient estimators.
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Fig 7. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Beta Model)

Robustness Results for Data Generated by Normal Model: In this case
we generated the data by the normal model with N(2, 12) as the alternative distri-
bution. The p-values were then computed and all four methods of estimation were
applied. The results are plotted in Figs. 9 and 10. From these figures we see that
none of the proposed estimators exhibit consistent negative bias as they did when
the data were generated according to the beta model. This is somewhat surprising
since one would expect these estimators to perform more poorly when the assumed
model does not hold as in the present case. We also see that the EM estimator
performs worse than other estimators. Thus lack of robustness of the EM estimator
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Fig 8. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Beta Model)

to the model assumptions is demonstrated again, and for the same reason. The TS
estimator generally has the lowest bias for estimating π0 and its achieved FDR is
closest to the nominal α; the ST estimator has the second best performance.
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Fig 9. Bias and
√

MSE of π̂0 for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Normal Model)

6. Example

We consider the National Assessment of Educational Progress (NAEP) data ana-
lyzed by Benjamini and Hochberg (2000). The data pertain to the changes in the
average eighth-grade mathematics achievement scores for the 34 states that partic-
ipated in both the 1990 and 1992 NAEP Trial State Assessment. The raw p-values
for the 34 states are listed in the increasing order in Table 2. The FWE controlling
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Fig 10. Bias and
√

MSE of F̂DR for ST, HCK, TS and EM Estimators for Beta Model (Data
Generated by Normal Model)

Bonferroni procedure and the Hochberg (1988) procedure both identified only 4
significant results (those with p-values ≤ p(4) = 0.0002) Application of the FDR
controlling non-adaptive Benjamini-Hochberg SU procedure resulted in 11 signifi-
cant results. By applying their method they estimated m̂0 = 7 (π̂0 = 0.2059); using
this value in the adaptive version of their procedure yielded 24 significant results.

We applied the three methods of estimation considered in this paper to these
data under both the normal and beta models. The estimates π̂0 and the associated
δ̂ or (â, b̂) values are given in Table 1. We see that for both models, the HCK and
EM methods give smaller estimates of π0 than does the TS method. The γ̂-values
obtained by solving the equation F̂DR(γ) = α for α = 0.05 are inversely ordered.

Table 1
Estimates of the Parameters for the Normal and Beta Models, Value of γ̂ and Number of

Rejected Hypotheses for the HCK, TS and EM Methods

Normal Model Beta Model
HCK TS EM HCK TS EM

π̂0 0.1317 0.3233 0.1407 0.0096 0.1307 0.0160

γ̂ 0.3163 0.0918 0.2946 1.0000 0.3092 1.0000

δ̂ 1.8285 2.2657 1.9221 – – –

â – – – 0.3291 0.4474 0.3210

b̂ – – – 2.0764 3.2842 1.9313
Nr 28 21 27 34 27 34

Nr = Number of rejected hypotheses

The p-values ≤ γ̂ are declared significant. From Table 2, we see that the number
of significant p-values for HCK, TS and EM for the normal model are 28, 21 and
27, respectively. Thus, HCK and EM methods give more rejections than Benjamini
and Hochberg’s (2000) adaptive SU procedure.

Before fitting the beta mixture model, it is useful to plot a histogram of the p-
values. This histogram is shown in Fig. 11. It has a decreasing shape, and assuming
that the majority of the p-values are non-null, it corresponds to a < 1 and b > 1.

imsart-coll ver. 2008/08/29 file: Tamhane.tex date: April 10, 2009



322 Tamhane and Shi

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 

5 

10

15

20

25

p−value

F
re

qu
en

cy

Fig 11. Histogram of the p-Values for the NAEP Data

HCK and EM methods yield π̂0 < α = 0.05, hence γ̂ = 1 which means that all 34
hypotheses are rejected. This evidently liberal result is likely due to underestimation
of π0 using the beta model as noted in Section 5.2. The TS method yields π̂0 =
0.1307 and γ̂ = 0.3092, which are close to the estimates produced by the HCK and
EM methods for the normal model and it rejects the same 27 hypotheses.

Rejections of hypotheses with large p-values will justifiably raise many eyebrows.
This appears to be a problem with FDR-controlling procedures when there are many
hypotheses that are clearly false (with p-values close to zero) which lowers the bar
for rejection for other hypotheses. Shaffer (2005) has discussed this problem and
has suggested imposing additional error controlling requirements in order to limit
such dubious rejections. This is a topic for further research.

7. Concluding Remarks

In this paper we offered two different mixture models for estimating the number of
true null hypotheses by modeling the non-null p-values. For each model (the normal
and beta), three methods of estimation were developed: HCK, TS and EM. Gener-
ally speaking, these parametric estimators outperform (in terms of the accuracy of
the estimate of π0 and control of the FDR) the nonparametric ST estimator for the
normal model but not for the beta model. The reason for this is that the normal
model is easier to estimate and so the benefits of the parametric estimators are not
significantly compromised by the errors of estimation. On the other hand, the beta
model is difficult to estimate and so the benefits of the parametric estimators are
lost. Therefore we do not recommend the use of the beta model in practice.

For normally distributed test statistics, the EM estimator generally performs best
followed by the HCK and TS estimators. However, the EM estimator is not robust
to the violation of the model assumptions. If the EM estimator for the normal model
is applied to the data generated from the beta model or vice versa, its performance
is often worse than that of the HCK estimator, and sometimes even that of the ST
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Table 2
NAEP Trial State Assessment: Test Results for the HCK, TS and EM Methods (Normal Model)

State p-value HCK TS EM State p-value HCK TS EM
RI 0.00000 * * * NY 0.05802 * * *
MN 0.00002 * * * OH 0.06590 * * *
HI 0.00002 * * * CA 0.07912 * * *
NC 0.00002 * * * MD 0.08226 * * *
NH 0.00180 * * * WV 0.10026 * *
IA 0.00200 * * * VA 0.14374 * *
CO 0.00282 * * * WI 0.15872 * *
TX 0.00404 * * * IN 0.19388 * *
ID 0.00748 * * * LA 0.20964 * *
AZ 0.00904 * * * MI 0.23522 * *
KY 0.00964 * * * DE 0.31162 *
OK 0.02036 * * * ND 0.36890
CT 0.04104 * * * NE 0.38640
NM 0.04650 * * * NJ 0.41998
WY 0.04678 * * * AL 0.44008
FL 0.05490 * * * AR 0.60282
PA 0.05572 * * * GA 0.85628

∗Significant p-values are indicated by asterisks. For the beta model, the HCK and EM methods
find all p-values significant, while the TS method finds the p-values less than γ̂ = 0.3093

significant, i.e., the same as those under the EM column in this table.

estimator. The TS estimator did not improve on the HCK estimator in all cases
as we had hoped. Thus our final recommendation is to use the normal model with
the EM method if the test statistics follow approximately normal distributions and
the HCK method otherwise. If only the p-values calculated from various types of
test statistics are available then the ST method is recommended; alternatively the
p-values may be transformed using the inverse normal transform and then the HCK
method may be applied.
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Appendix A

Proof of Lemma 2. We have

E[Xa(λ)] = E





1
Na

∑

i∈Sa(λ)

Xi





= E

{
E

[
1
na

∑

i∈sa

Xi

∣∣∣∣∣Sa(λ) = sa, Na(λ) = na

]}

= E

{
1
na
· na[g(π0, δ, λ)c0a(λ) + [1− g(π0, δ, λ)]c1a(δ, λ)]

}

= g(π0, δ, λ)c0a(λ) + [1− g(π0, δ, λ)]c1a(δ, λ).
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In the penultimate step above, we have used the fact that conditionally on Xi ≤ zλ,
the probability that Zi = 1 is g(π0, δ, λ) and the probability that Zi = 0 is
1 − g(π0, δ, λ). Furthermore, the conditional expectation of Xi in the first case
is c0a(λ) and in the second case it is c1a(δ, λ). The expression for E[Xr(λ)] follows
similarly.

Proof of Lemma 5. By substituting for β(·, γ) from (2.2) and dropping carets on
F̂DR(γ), π̂0, π̂1 and δ̂ for notational convenience, the equation to be solved is

FDR(γ) =
π0

π0 + π1Φ(δ − zγ)/γ
= α.

It is easy to check that FDR(0) = 0 and FDR(1) = π0. We shall show that FDR(γ)
is an increasing function of γ which will prove the lemma. Thus we need to show
that u(δ, γ) = Φ(δ − zγ)/γ is decreasing in γ. By implicit differentiation of the
equation Φ(zγ) = 1− γ, we get

dzγ

dγ
= − 1

φ(zγ)
.

Hence,
du(δ, γ)
dγ

=
γφ(δ − zγ)− φ(zγ)Φ(δ − zγ)

γ2φ(zγ)
.

Therefore we need to show that

v(δ, γ) = φ(zγ)Φ(δ − zγ)− γφ(δ − zγ) > 0 ∀ δ > 0.

Now v(0, γ) = 0. Therefore we must show that

dv(δ, γ)
dδ

= φ(δ − zγ)[φ(zγ) + γ(δ − zγ)] > 0,

which reduces to the condition: w(δ, γ) = φ(zγ) + γ(δ − zγ) > 0. Since w(δ, γ) is
increasing in δ, it suffices to show that

w(0, γ) = φ(zγ)− γzγ > 0.

By putting x = zγ and hence γ = Φ(−x) the above inequality becomes

Φ(−x)
φ(x)

<
1
x
,

which is the Mills’ ratio inequality (Johnson and Kotz 1970, p. 279). This completes
the proof of the lemma.

Proof of Lemma 6. By substituting for β(·, γ) from (3.2) and dropping carets on
F̂DR(γ), π̂0, π̂1, â and b̂ for notational convenience, the equation to be solved is

(A.1) FDR(γ) =
π0

π0 + π1Iγ(a, b)/γ
= α.

Note that FDR(0) = 0 and FDR(1) = π0. To show that FDR(γ) is an increasing
function of γ we need to show that Iγ(a, b)/γ decreases in γ. To see this, note that
the derivative of Iγ(a, b)/γ w.r.t. γ is proportional to γg(γ|a, b)− Iγ(a, b), which is
negative since the beta p.d.f. g(γ|a, b) is strictly decreasing in γ for a < 1 and b > 1,
and so γg(γ|a, b) < Iγ(a, b). It follows therefore that the equation FDR(γ) = α has
a unique solution in γ ∈ (0, 1) for α ∈ (0, π0].
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Bayesian Decision Theory for Multiple

Comparisons

Charles Lewis1 and Dorothy T. Thayer2

Fordham University and Educational Testing Service

Abstract: Applying a decision theoretic approach to multiple comparisons
very similar to that described by Lehmann (1950, 1957a, 1957b), we introduce
a loss function based on the concept of the false discovery rate (FDR). We
derive a Bayes rule for this loss function and show that it is very closely related
to a Bayesian version of the original multiple comparisons procedure proposed
by Benjamini and Hochberg (1995) to control the sampling theory FDR. We
provide the results of a Monte Carlo simulation that illustrates the very similar
sampling behavior of our Bayes rule and Benjamini and Hochberg’s procedure
when applied to making all pair-wise comparisons in a one-way fixed effects
analysis of variance setup with 10 and with 20 means.
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1. Introduction

A previous paper by the authors (Lewis & Thayer, 2004) considered the applica-
tion of Bayesian decision theory to the multiple comparisons problem for random
effects designs, following the earlier work of Shaffer (1999), Duncan (1965), and
Waller and Duncan (1969). In our paper, we demonstrated that the Bayes rule for
a per-comparison “0-1” loss function controls a random effects version of the false
discovery rate (FDR), thus supporting and extending Shaffer’s (1999) results.

A recent paper by Sarkar and Zhou (2008) adopts a random effects setup very
similar to that of our earlier paper. Rather than considering Bayes rules, they in-
troduce a procedure that controls the random effects FDR discussed by us while
maximizing the random effects per-comparison power rate that we had considered.
This approach produces substantial power gains over other procedures (including
ours), but it “declares even small differences significant when τ [the between-groups
standard deviation] is large, thereby achieving [even] greater power than the un-
adjusted (per-comparison) procedure for large values of τ” (Sarkar & Zhou, 2008,
p. 692). We view this as a weakness, rather than a strength, of their method, as it
seems to ignore the basic principle behind multiple comparisons procedures, namely

1Fordham University and Educational Testing Service
2Educational Testing Service
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that making multiple inferences calls for increased conservatism relative to making
a single inference.

The present study considers a more general setting for making multiple compar-
isons and introduces a new loss function that is more directly tied to the FDR. We
derive a Bayes rule for this loss function and show that it is very closely related
to a Bayesian version of the original multiple comparisons procedure proposed by
Benjamini and Hochberg (1995) to control the sampling theory FDR. We provide
the results of a Monte Carlo simulation that illustrates the very similar sampling
behavior of our Bayes rule and Benjamini and Hochberg’s procedure when applied
to testing all pairwise comparisons for a one-way fixed effects analysis of variance
setup with 10 and with 20 means.

2. Setup

We start with a general likelihood p (y |θ ), prior p (θ), and resulting posterior
p (θ |y ). Let ψ = f (θ) be a vector of m “contrasts” among the elements of θ.
Suppose our goal is to identify the sign of each of the elements of ψ, given y. In
the language of decision theory, for each ψi, i = 1, · · · ,m, we will take action ai,
with ai = +1 used to indicate that we declare ψi to be positive, ai = −1 indicating
that we declare ψi to be negative, and ai = 0 used to indicate that we are unable
to determine sign of ψi. Although directly inspired by Williams, Jones and Tukey
(1999), and Jones and Tukey (2000), this approach to (multiple) hypothesis testing
has its origins in the much earlier work of Lehmann (1950, 1957a, 1957b).

To continue, we introduce two component loss functions: L1 (ψi, ai) = 1 if the
signs of ψi and ai disagree, and L1 = 0 otherwise (used to count the number of
incorrect sign declarations); L2 (ψi, ai) = 1 if ai = 0, and L2 = 0 otherwise (used
to count the signs not declared). These actions and losses are very similar to those
given by Lehmann (1957b, p. 549). They differ from conventional treatments of hy-
pothesis testing in the sense that they focus on identifying the sign of each contrast
and do not formally consider the possibility that the value of the contrast could
be (exactly) 0. The reasonableness of this approach, compared with conventional
point hypothesis testing is emphasized by Jones and Tukey (2000), among others.

We now propose a loss function that combines L1 and L2 as follows:

(1) LDFDR (ψ,a) =

m∑
i=1

L1 (ψi, ai)

max
{

1,m−
m∑
i=1

L2 (ψi, ai)
} +

(α
2

)
m∑
i=1

L2 (ψi, ai)

m
,

for a fixed choice of 0 < α < 1 (such as α = 0.05). Here, DFDR (in notation
introduced by Shaffer, 2002) stands for Directional False Discovery Rate. The first
term in Equation 1 is the sample value of the DFDR for a given ψ and a vector of
actions a, namely the number of incorrect sign declarations, divided by the total
number of signs declared (or divided by 1 if no signs are declared by a).

The second term in Equation 1 is α/2 times the sample proportion of signs
not declared. This term may be interpreted as a sample per-comparison Type II
error rate, weighted by a relative importance factor of α/2. Using a per-comparison
formulation, as well as assigning this loss component a small weight, serves to
emphasize that failure to declare a sign is considered to be much less serious than
declaring that sign incorrectly. This emphasis is in keeping with the concern about
controlling Type I errors (at the expense of making Type II errors) in traditional
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treatments of the multiple comparisons problem. The Bayes decision rule for the
complete loss function in Equation 1 minimizes its posterior expected value, in this
sense balancing the two types of losses against each other, with the major focus
being on reducing the DFDR.

3. Bayes Decision Rule

To identify the actions that minimize the posterior expected value of the loss func-
tion given in Equation 1, we begin by introducing some notation.
If Pr (ψi > 0 |y ) > 0.5, define a∗i = +1 and pi = Pr (ψi < 0 |y ); if Pr (ψi > 0 |y ) 6
0.5, define a∗i = −1 and pi = Pr (ψi > 0 |y ). Note that a∗i and pi are related by
the following result: Eθ|y [L1 (ψi, a∗i ) |y ] = pi. Now order the pi so that p(1) 6
· · · 6 p(m). Define a(k) for k = 1, · · · ,m as a(k)

(i) = a∗(i), for i = 1, · · · , k, and

a
(k)
(i) = 0, for i = k + 1, · · · ,m. For k = 0, take a(0)

(i) = 0, for i = 1, · · · ,m.
The posterior expected loss for a(k) is given by

(2) Eθ|y
[
LDFDR

(
ψ,a(k)

)
|y
]

=

k∑
i=1

p(i)

max {1, k} +
(α

2

)(
1− k

m

)
.

Clearly, a(k) minimizes the posterior expected loss among all action vectors a that
declare exactly k signs. Let kDFDR be the value of k for which the posterior expected
loss given in Equation 2 is minimized. (The value of kDFDR in a given setting would
normally be determined by an exhaustive search over all values of k = 0, · · · ,m.)
The Bayes decision rule for this problem is given by δDFDR (y) = a(kDF DR), and
the corresponding Bayes risk is

(3)

r (δDFDR) = Eθ,y [LDFDR (ψ, δDFDR (y))]

= Ey




kDF DR∑
i=1

p(i)

max{1,kDF DR} +
(
α
2

) (
1− kDF DR

m

)

 .

The latter expectation in Equation 3 is taken with respect to the predictive dis-
tribution of y, and it should be noted that the p(i) and, consequently, kDFDR all
depend on y.

Since Eθ|y
[
LDFDR

(
ψ,a(0)

)
|y
]

= α/2 for all y, it follows that r (δDFDR) 6 α/2.
Consequently,

(4) Eθ,y




m∑
i=1

L1 (ψi, δDFDR,i (y))

max
{

1,m−
m∑
i=1

L2 (ψi, δDFDR,i (y))
}


 6 α

2
.

Equation 4 says that a Bayesian version of the DFDR is bounded by α/2 when the
Bayes rule δDFDR is used. It may be worth observing that these results apply to a
very general class of multiple comparison problems. Essentially the only restriction
is that the set of contrasts be finite. Indeed, these do not even have to be contrasts in
the usual sense of that term. They could also, for example, be a set of independent
parameters that formed a family of interest.
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4. A Bayesian Version of Benjamini & Hochberg’s Procedure

Next, we consider the multiple comparisons procedure proposed by Benjamini and
Hochberg (1995) and modified for directional testing by Williams, Jones and Tukey
(1999).

However, we will translate the procedure into our Bayesian framework. Define
kDB & H to be the largest value of k = 1, · · · ,m, such that

p(k) 6
(α

2

)( k

m

)
,

with kDB & H = 0 if no such value of k exists. Define δDB & H (y) = a(kDB & H).
If kDB & H = 0, then the posterior expected loss for a(kDB & H) is equal to α/2.

If kDB & H > 0, the posterior expected loss for a(kDB & H) is given by Equation 2 as

(5) Eθ|y
[
LDFDR

(
ψ,a(kDB & H)

)
|y
]

=

kDB & H∑
i=1

p(i)

kDB & H
+
(α

2

)(
1− kDB & H

m

)
.

From the definition of kDB & H , it follows that

(6) p(i) 6
(α

2

)(kDB & H

m

)
for i = 1, · · · , kDB & H .

Consequently, applying Inequality 6 to Equation 5, it follows that

Eθ|y
[
LDFDR

(
ψ,a(kDB & H)

)
|y
]

6
(α

2

)(kDB & H

m

)
+
(α

2

)(
1− kDB & H

m

)
=
α

2
.

Since this inequality holds for all y, it implies that r (δDB & H) 6 α/2, and so, just
as with δDFDR,

(7) Eθ,y




m∑
i=1

L1 (ψi, δDB & H,i (y))

max
{

1,m−
m∑
i=1

L2 (ψi, δDB & H,i (y))
}


 6 α

2
.

Equation 7 says that δDB & H also controls our Bayesian DFDR.
This seems like an appropriate place to note that what has just been estab-

lished (namely the fact that δDB & H controls the DFDR for an arbitrary set of
contrasts) is a Bayesian, rather than a sampling theory result. Indeed, Benjamini
and Hochberg’s (1995) sampling theory procedure has only been shown to control
the sampling theory FDR in special circumstances, such as the case of independent
tests. In particular, it has not been shown to provide sampling theory control of the
FDR when making all pairwise comparisons among a set of means in a one-way,
fixed effects analysis of variance setup.

Since δDFDR is a Bayes decision rule, it must be the case that r (δDFDR) 6
r (δDB & H). Moreover, it is also possible to show that kDFDR > kDB & H for all
y. To see this, suppose the contrary: kDB & H = kDFDR + d with d > 0. By the
definition of kDFDR, we must have

kDF DR∑
i=1

p(i)

max {1, kDFDR}
+
(α

2

)(
1− kDFDR

m

)
<

kDB & H∑
i=1

p(i)

kDB & H
+
(α

2

)(
1− kDB & H

m

)
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or

kDF DR∑
i=1

p(i)

max {1, kDFDR}
+
(α

2

)(
1− kDFDR

m

)
<

kDF DR∑
i=1

p(i) +
kDF DR+d∑
i=kDF DR+1

p(i)

kDFDR + d

+
(α

2

)(
1− kDFDR + d

m

)
.(8)

Note that a strict inequality has been used here, implying that, in case of ties,
kDFDR would be chosen to be the largest value of k that minimizes the posterior
expected loss. To continue, using the definition of kDB & H ,

(9)
kDF DR+d∑

i=kDF DR+1

p(i) 6 d
(α

2

)(kDFDR + d

m

)
.

Combining Inequalities 8 and 9 gives

kDF DR∑
i=1

p(i)

max {1, kDFDR}
+
(α

2

)(
1− kDFDR

m

)
<

kDF DR∑
i=1

p(i)

kDFDR + d

+
(α

2

)( d

m

)
+
(α

2

)(
1− kDFDR + d

m

)

or

(10)

kDF DR∑
i=1

p(i)

max {1, kDFDR}
<

kDF DR∑
i=1

p(i)

kDFDR + d
,

If kDFDR > 0, Inequality 10 implies that d = 0, contrary to our initial assumption.
If kDFDR = 0, both sides of Inequality 10 would be 0, contradicting the strict
inequality. Thus, we have demonstrated that kDFDR > kDB & H for all y. In other
words, the Bayes rule δDFDR will always declare at least as many signs as δDB & H .

5. Simulation Results

It is important to recall that the procedure actually proposed by Benjamini and
Hochberg (1995) uses sampling theory p-values (one-tailed values in Williams, Jones
and Tukey’s 1999 version), rather than posterior tail probabilities and controls
the sampling theory version of the FDR (or DFDR in Willams et al.’s version).
Now consider a standard multiple comparisons problem: the one-way, fixed effects
analysis of variance setup, with the ψi chosen to be all pair-wise differences among
the group means. In this case, the relevant sampling theory and Bayesian (based on
a vague prior for all parameters) p-values are identical tail probabilities from the
appropriate Student’s t-distribution (see, for instance, Box & Tiao, 1973, p. 140).

Tables 1 and 2 give the results of sampling theory simulations (based on 25,000
replications for each condition) of one-way, fixed effects ANOVA setups, considering
all pair-wise differences for 10 evenly spaced means, and for 25 evenly spaced means.
In these simulations, the within-group variance was set at 3.0 with n = 3 sample
observations per group (so the sampling variances of the sample means are all equal
to 1.0 and the within-group degrees of freedom equals 20 in the first case and 50 in
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the second case). In addition, we chose α = 0.05, with the intention of controlling
the sampling theory DFDR at α/2 = 0.025, although we emphasize again that
there is no theory to support that control for pair-wise comparisons.

The DFDR values in Table 1 are sampling theory averages of the sample DFDR
used as the first term of our loss function for the two rules with two numbers of
means, and a range of spacings among the means. To make the results comparable
across the two setups, we used the population standard deviation (denoted here by
τ) to index the spread of the means. The Average Power values in Table 2 are sam-
pling theory averages of the sample per-comparison correct sign declaration rate.
All four quantities for a given number of means are computed from the same 25,000
replications at each spread of the means. Note that the spread is effectively given
in units equal to the standard errors of the sample means. For the spread labeled
“0.00+” all population mean values were set equal, and an arbitrary ordering was
chosen to evaluate the “wrong sign” errors. Both procedures conservatively control
the DFDR for all conditions considered. The Bayes rule procedure provides slightly
greater per-comparison power than that of Benjamini and Hochberg in these con-
ditions, but the actual differences are trivial.

Table 1. Sampling Theory DFDR for All Pair-wise Comparisons Made Using Our Bayes Rule
and Benjamini & Hochberg’s Procedures.

τ : Spread 10 Means 25 Means
of Means δDFDR δDB & H δDFDR δDB & H

0.00+ 0.0204 0.0171 0.0206 0.0176
0.721 0.0062 0.0044 0.0067 0.0046
3.606 0.0005 0.0005 0.0013 0.0012
5.408 0.0001 0.0001 0.0006 0.0006
7.211 0.0000 0.0000 0.0003 0.0003
14.422 0.0000 0.0000 0.0000 0.0000

Table 2. Sampling Theory Average Power for All Pair-wise Comparisons Made Using Our Bayes
Rule and Benjamini & Hochberg’s Procedure.

τ : Spread 10 Means 25 Means
of Means δDFDR δDB & H δDFDR δDB & H

0.00+ 0.002 0.002 0.001 0.000
0.721 0.022 0.016 0.012 0.007
3.606 0.634 0.621 0.604 0.594
5.408 0.783 0.778 0.741 0.737
7.211 0.860 0.857 0.813 0.811
14.422 0.984 0.984 0.924 0.924

Note: 25,000 replications for each condition, n = 3 observations per group, within
degrees of freedom ν = 20 for 10 means and ν = 50 for 25 means, within variance
σ2 = 3.0, α/2 = .025.

6. Conclusions

The decision rule δDFDR has been shown to be optimal (from a Bayesian perspec-
tive) relative to the loss function LDFDR for a wide class of multiple comparison
problems involving sign declarations. It has also been shown to control a Bayesian
version of the directional false discovery rate (DFDR), as has a Bayesian version of
the procedure proposed by Benjamini and Hochberg (δDB & H). There is no guar-
antee that δDFDR or δDB & H will control a sampling theory DFDR for the case
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of pair-wise comparisons, although that appears to occur in the ANOVA examples
given, where the two rules behave very similarly.
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The Challenges of Model Objective

Selection and Estimation for Ad-hoc

Network Data Sets

Farinaz Koushanfar1,2 and Davood Shamsi2

Rice University

Abstract: We introduce a new methodology for determining the difficulty of
selecting the modeling objective function and estimating the parameters for
an ad-hoc network data set. The method utilizes formulation of the underlying
optimization problem instance that consists of an objective function and a set
of constraints. The method is illustrated on real distance measurement data
used for estimating the locations of wireless nodes that is the most studied
and a representative problem for ad-hoc networks estimation. The properties
of the data set that could affect the quality of optimization are categorized.
In large optimization problems with multiple properties (characteristics) that
contribute to the solution quality, it is practically impossible to analytically
study the effect of each property. A number of metrics for evaluating the ef-
fectiveness of the optimization on each data set are proposed. Using the well
known Plackett and Burmann fast simulation methodology, for each metric,
the impact of the categorized properties of the data are determined for the
specified optimization. A new approach for combining the impacts resulting
from different properties on various metrics is described. We emphasize that
the method is generic and has the potential to be more broadly applicable to
other parameter estimation problems.
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1. Introduction

Wireless adhoc networks consist of multiple wireless nodes distributed in an
implementation area. To be power efficient, the wireless nodes only directly com-
municate with the nodes in their short local range (neighbor nodes). Communi-
cation between the non-neighbor nodes is enabled by successive usage of (one or
more) local neighbors as forwarding relays. Several problems in this domain include
modeling and estimation of data sets that only contain pairwise exchanged data
between the neighboring nodes.

Years of continuous research in building statistical models and parameter esti-
mation has produced a multitude of readily available methods and tools that can be
employed for the problems in ad-hoc networks [10]. One limitation of the available
methods is that majority of the ad-hoc modeling and estimation problems concern
a large body of data and do not conform with typical assumptions needed to an-
alytically declare the known theoretical optimality criteria. In such scenarios, the
quality of the modeling and estimation methods are typically evaluated by how they
perform on sets of real or simulated data. For example, some statistics of the result-
ing prediction error and/or a defined criterion (e.g., Bayesian information criterion
(BIC)) is used for experimental evaluation of the method on the adhoc network
measurements. A relevant question to answer is if indeed modeling and estimation
of the pertinent data set requires introduction of a new model or an estimator, or
the data could have been just as well addressed by the other known methods.

Our objective is to quantify the difficulty of model selection and estimation for
a given adhoc network data set. This would provide impetus for inventing newer
modeling and estimation objectives and tools that can address the difficult-to-
characterize data. Simultaneously, formation of new tools would depend upon find-
ing truly challenging network data sets that need to be addressed, as opposed to
building new models that have a limited practical usage. Devising sets of challenging
data would also build a foundation for comparing the various modeling objective
functions and estimators for the ad-hoc network data sets. The problem of finding
challenging data is complicated by variations in properties of the underlying data
sets collected by different sources. This includes difference in size, format, wireless
ranges, hidden covariates, and the form of noise present in the collected data. Thus,
it is not easy to find unique metrics that could be used for comparison of different
modeling objective functions and estimation methods.

In statistics literature, sensitivity of estimation error or other discrepancy metrics
to the underlying noise in data has been widely studied for a number of modeling
methods [24][3]. Also, the consistency of estimators based on a number of strong
assumptions on the distribution of the data has been pursued [14]. However, no
generic method or tool for determining the difficulty in modeling a data set free of
imposing strong assumptions – such as normality or other closed-form distributions
of noise – is available for use in adhoc networks. Note that the runtime complexity
of a problem is an orthogonal concept. The complexity measures the worst-case
computational time for the algorithm used for addressing the problem. Analyzing
the worst-case runtime complexity does not help in understanding the complexity
of characterizing a specific data set.

In adhoc network scenario, after the variable selection is done and the noise
models are assumed, modeling is typically done by selecting a model form (e.g.,
nonlinear regression) and then estimating the model parameters on the data set.
For analyzing the modeling objective function and estimation performance on the
data, we study the pertinent optimization problem that consists of an objective
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function (OF) and a number of constraints. The data set is considered as the in-
put to the optimization problem. We introduce a number of metrics that measure
the complexity of the optimization problem based on the problem OF properties
and constraints. The challenge in most optimization problems is the existence of
nonlinearities that make the solution space coarse, causing bumpiness and multiple
local minimums. We propose a number of measures for the smoothness of the OF
and constraints space that estimate the feasibility of reaching the global minimum.

To enable studying the effectiveness of the optimization on an adhoc network
data set, one should characterize the properties of the pertinent data set. The
properties are specific to each data set and the problem. In this article, we focus
on the problem of finding the location of nodes (localization) in an adhoc wireless
network by using erroneous mutual distance measurements between a number of
node pairs. However, we emphasize that our method is generic and can be used
for determining the challenge in addressing many adhoc data set model objective
selection and estimation that includes forming an optimization problem. The lo-
calization problem is selected for four reasons. First, it is a very well addressed
problem in the literature and there are several methods that are developed for this
problem [6][9][19][2][20][26]. Second, there are a number of publicly available data
sets for the measured distance data in the networks [5][21][8]. Third, the nonlinear
relationship between noise in measurements data and the location of nodes makes
the modeling problem extremely challenging. Fourth, localization problem is an
NP-complete problem, i.e., in the worst case, there is no algorithm that can solve it
in polynomial time [25][6]. Lastly, location discovery is a precursor for a number of
other problems in ad hoc networks including sleeping coordination [12, 13], sensor
coverage [15], and sensing exposure [16].

We characterize a number of properties of the measurement data set that could
affect the quality of location estimation. Studying the interaction between the iden-
tified data properties and optimization metrics requires long simulations and anal-
ysis. We use the well-known Plackett and Burmann [23] simulation methodology
to rapidly study the pairwise linear interactions of properties. A new approach for
combining the impacts resulting from different properties of data on various opti-
mization metrics is described. The sensitivity of optimization with respect to the
various parameter ranks are presented.

To the best of our knowledge, this is the first work that systematically studies
the impact of the adhoc network data set on the optimization employed for finding
the modeling objectives and estimations. Most of the previous work are devoted to
modeling and analysis of the worst case complexity. The results of our analysis could
be directly used for constructing benchmarks for the problem. The proposed work
aims at creating a unified framework based on real data that can help evaluation
and comparison of desperate efforts that address the same problem.

The remainder of the paper is organized a follows. In the next section, location
estimation problem and our notations are formally defined. In Section 3, we devise a
number of metrics that are used for OF evaluation. The simulation methodology is
described in Section 4. In Section 5, we illustrate how the results of different metrics
can be combined. We have applied the derived method on the measurements from
a real network in Section 6. We conclude in Section 7.

2. Preliminaries

In this section, we present the formal definition of the problem. We also describe
the notations that are used throughout the paper.
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Location estimation problem: Given a set of N nodes denoted by V =
{v1, v2, . . . vN} in Rd (d = 2, 3). For a given subset of node pairs denoted by
E ⊂ V × V , mutual distance of nodes are measured, i.e., for all (vi, vj) ∈ E,
l(vi, vj) = d(vi, vj) + εi,j is known; d(vi, vj) is the Euclidean distance between the
nodes vi and vj ; εi,j is the distance measurement error. This error is only known if
the real and measured location are both available. Moreover, there is a subset with
M(> 2) nodes denoted by VB = {v1, . . . vM}, VB ⊂ V such that the nodes in VB
have their exact location information (coordinates). The nodes in the set VB are
called the beacon nodes.

Question: find the location of all possible nodes.
In this paper, we focus on two-dimensional networks. Extension to three-

dimensional networks is straight forward. Coordinates of the node vi are denoted
by (xi, yi).

The location estimation problem can be formulated as an optimization problem.
The goal is to find the coordinates of K = N −M non-beacon nodes such that the
discrepancy (error) between the measured distance data and the nodes’ distances
estimated from the final coordinates is minimized. In other words,

FL(xM+1, yM+1, xM+2, yM+2, . . . xN , yN ) =
∑

(vi,vj)∈E
L(evi,vj )(1)

evi,vj = l(vi, vj)−
√

(xi − xj)2 + (yi − yj)2

Where L : R → R+ is a function that is typically a metric (measure) of error.
FL : R2K → R+ is known as objective function (OF) of the optimization problem.

Note that the OF of the location estimation problem is not necessarily a linear
or convex function. There are a number of fast and efficient tools that are developed
for linear and convex programming. However, there is no oracle algorithm that can
solve all optimization problems. To find the minimum of a nonlinear problem like
location estimation, there are a number of heuristic methods that may be employed.
The nonlinear system solvers have a tendency to get trapped in a local minimum
and do not necessarily lead to the global minimum. Although there are a variety
of minimization algorithms, most of them are common in one subcomponent that
starts from an initial point and follow the steepest decent to reach the minimum.
The algorithms differ in how they choose the starting point, how they select the
direction in the search space, and how they avoid local (non-global) minima. Thus,
the shape of the OF around the global minimum is an important factor in finding
the solution.
Data set: The measurement data used in this problem consists of measured dis-
tances between a number of static nodes in the plane. Measurements are noisy;
there are multiple measurements for each distance. The true location of the nodes
is known and will be known as the ground truth. As explained in Section 1, we
sample the data set to obtain instances with specific properties.
Parameters: We will define a number of parameters that can be extracted from
the data set. The sensitivity of the location estimation to the variations in each
parameter will be studied. The analysis results will be used for identifying the hard
instances of measurement data. Ten parameters are studied:

• P1 – Number of nodes (N): the total number of nodes in the network.
• P2 – Number of beacons (B): the number of beacon nodes with known loca-

tions.
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• P3 – Mean squared error (ε2): mean squared error of distance measurements.
• P4 – Maximum allowed squared error (MAXε2m

): the maximum squared error
that can possibly exist in distance measurements.

• P5 – Percent of large errors (PERε20): percentage of squared distance mea-
surement noises that are higher than a specific value ε20.

• P6 – Mean degree (D): mean degree of the nodes in the network. Degree of a
node vi is define as number of nodes that have their mutual distance to vi.

• P7 – Minimum length (MINL): possible minimum length of the measured
distances between nodes in the network.

• P8 – Maximum length (MAXL): possible maximum length of the measured
distances between nodes in the network.

• P9 – Mean length (l): mean length of the measured distances between nodes
in the network.

• P10 – Minimum degree (MIND): possible minimum degree of the nodes in the
network.

To study the effect of the parameters, we construct a variety of network instances
with different properties. The networks are constructed by selecting subsets of an
implemented network. Having specific values for parameters, we use Integer Linear
Programming (ILP) to extract each subset such that it meets specified conditions.
To do so, we model parameter constraints as linear equalities and inequalities.
Some parameters such as the mean squared error, ε2, can be easily stated by linear
equalities and inequalities. But some parameters such as the mean degree of the
nodes, D, need a mapping to be stated in linear terms. The description of the exact
procedure of modeling by linear constraints is beyond the scop of this paper [8].

3. Metrics

In this section, we introduce metrics for error and OF that are used for evaluating
the importance of different parameters for location estimation. Three error metrics
and four OF metrics are presented. Thus, a total of twelve combined metrics are
used to evaluate the importance of parameters.

3.1. Error Metrics

The three error metrics studied in this paper are: L1, L2, and the maximum
likelihood (ML). L1 and L2 are the common error norms in the Lp family defined
as:

Lp(evn,vm ∈ E) = (
∑

(vn,vm)∈E
|evn,vm |p)1/p if 1 ≤ p <∞.

To find the error metric corresponding to ML, we need to model the noise in dis-
tance measurements. To model the noise, the probability density function (PDF) of
errors, fm, for the distance measurements should be approximated. Different meth-
ods are developed to approximate PDF of noise, fm [8]. We have used kernel fitting
that is a simple and known PDF approximation method [10]. To have the maximum
likelihood estimation for the nodes’ locations, we find the nodes’ coordinates such
that they maximize

(2)
∏

(vn,vm)∈E
fm(evn,vm) = exp{

∑

(vn,vm)∈E
ln(fm(evn,vm))}
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Fig 1. Metrics and objective function (OF).

or equivalently minimize

(3)
∑

(vn,vm)∈E
− ln(fm(evn,vm)).

Note that we assume noise in distance measurements are independently identically
distributed. Using the same notations as the Equation 1 and Equation 3, for the
ML estimation we consider the following error metric:

(4) LML(evn,vm) = − ln(fm(evn,vm)).

3.2. Objective Function (OF) Metrics

We describe metrics that are used for evaluating OFs. The metrics are introduced
based on the properties of OF that are effective in optimization. These metrics are
such that they assign larger values to the more difficult-to-optimize OFs. For exam-
ple, if one selects a convex OF, it may be possible to utilize convex programming
depending on the form of the constraints. In defining the OF metrics, we assume
that there is a fixed instance of location estimation data. Thus, for a fixed error
metric, the OF would be fixed. Metrics of OF are denoted by M : C → R+ where
C is the functional space that contains all OFs.

3.2.1. Drifting of Objective Function (OF)

Since there is noise in distance measurements, true location of the nodes is
often not the global minimum of the OF. Location of the OF’s global minimum is
a measure of the goodness of the OF. Figure 1 illustrates the effect of noise on the
OF. For the sake of presentation simplicity, an one-dimensional OF is shown. In
this figure, pc is the correct nodes’ location. However, the global minimum of the
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OF is displaced at pgm because of the noise. We consider the distance between pc
and its displaced location pgm as an OF metric and denote it by drifting.

To find the drifting distance, we start from the true locations as the initial point.
Next, the steepest descent direction of the OF is followed until a local minimum is
reached. The Euclidean distance between the true locations and this local minimum
quantifies the drifting metric (denoted by M1) for the pertinent OF.

3.2.2. Nearest Local Minimum

Having a number of local minimums around the global minimum in an OF
may cause the optimization algorithm to get trapped in one of the non-global local
minimums. It is challenging to minimize such an OF since the global minimum
is hard to reach. Figure 1 illustrates the phenomena. The OF has multiple local
minima at points pm1, pm1 and so on. The steepest decent method leads to the
global minimum if and only if we start from a point between pm1 and pm2. Hence,
having a small distance between pm1 and pm2 would complicate the selection of the
initial starting point.

We introduce a method to measure the distance of the true locations from the
local minimums around the global minimum. Because of curse of dimensionality,
it is not possible to find all the local minimums around the global minimum. We
randomly sample the OF in multiple directions. The nearest local minimum is
computed for each randomly selected direction. We statistically find the distance
to the nearest local minimum by using multiple samples.

Assume F : R2K → R+ is the OF. A random direction in R2K is a vector in this
space. Let us denote it by v ∈ R2K . First, we define a new function h : R+ → R+

such that h(t) = F (pc + tv) where pc is a vector containing the true locations of
nodes. Second, we find the local minimum of h with the smallest positive t and
denote it by t1. We repeat this procedure for T times and find all ti’s. T is the
number of samples. Finally, since it is expected that the defined metric has a larger
value for more difficult-to-optimize OF, we define the nearest local minimum metric
to be

(5) M2(F ) =

(
1
T

T∑

i=1

ti

)−1

.

3.2.3. Measuring the Slope of OF Around the Solution

The Slope of OF (i.e., the norm of OF’s gradient) around the global minimum is
a very important parameter in the convergence rate of the optimization algorithm.
OFs with a small slope around the true location converge to the global minimum
very slowly.

Thus, measuring the slope of the OF around the global minimum can be used
to quantify the goodness of OF. Again, we measure slope of the OF in multiple
random directions around the true locations, and statistically compute this metric.
OFs with sharp slopes around the global minimum are easier to optimize. This can
be seen in Figure 2 where the right side of the global minimum, pgm, has a sharp
slope. If the initial point of steepest descent algorithm is between pgm and pm2,
it converges to the global minimum very fast. However, on the left side of global
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minimum, pgm, there is a gradual slope. Thus, the steepest descent algorithm would
converge very slowly on the left side. We define the true locations’ slope metric as

(6) M3(F ) =

(
1
T

T∑

i=1

slope in i-th random direction

)−1

.

Note that the slope of the i-th random direction, vi, is measured at pgm + σvi
where σ is a small number and is a user’s defined criterion.

3.2.4. Depth of the Non-Global Local Minima

Optimization problems that have an OF with deep local minimums around the
global minimum are difficult to solve. A number of heuristic optimization methods
take advantage of the shallow local minimums to avoid non-global local minimums,
e.g., simulated annealing [11]. In figure 2, avoiding the local minimum at pl1 is much
easier than local minimum at pl2.

We define the forth metric for quantifying the goodness of an OF on the data, as
the depth of the non-global local minimums. We randomly select T local minimums
around the true locations. Assuming that mi is the OF value at the randomly
selected local minimums, define

(7) M4(F ) =

(
1
T

T∑

i=1

mi

)−1

.

4. Simulation Methodology

We find the linear effect of each parameter by studying all combinations of
parameters. Assume each parameter has just two values. If we have k parameters
then we have to study 2k combinations that is computationally intractable. Instead,
we use Plackett and Burman (PB) [23] fast simulation methodology that is a very
well known method for reducing the number of simulations. Number of simulation
in PB is proportional to the number of parameters. Although the PB method has
not been used for the adhoc modeling and estimation problems, it was used for the
simulations speedup in a number of other adhoc network problems [1][22][27][28].

In PB design, two values are assigned to each parameter: a normal value and
an extreme value. The normal value is the typical value of the parameter while the
extreme value is the value that is outside the typical range of the parameter. The
extreme value often makes the problem either harder or easier to solve. A number
of experiments with normal and extreme values of parameters are conducted.

Experiments are arranged based on a given matrix denoted by the design matrix.
Design matrix has k columns (k is the number of parameters) and s rows where s
is the number of experiments the should be set up as follows. The elements of the
design matrix are either 0 or 1. We set up an experiment for each row. Values of the
parameters depend on the elements on the row: 0 indicates that the normal value
of the parameter is used and 1 indicates that the extreme value of the parameter
is used in the experiment corresponding to the row.

Assume that we have selected an error metric, Li, and an objective function
metric, Mj . The OF itself denoted by FLi would be fixed. For each row of the
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design matrix, h, we setup an experiment based on the elements of that row and
measure the goodness of the objective function Mj(FLi) and save it in another array
element denoted by ri,j,h. The corresponding values are summed up for computing
the importance factor (IF) of each parameter. For each parameter Pt, we define

(8) IFt,i,j = |
s∑

h=1

αh,tri,j,h|

where s is the number of experiments (number of rows in the design matrix), and
αh,t is 1 if the extreme value of the parameter Pt is used in the h-th experiment;
otherwise, αh,t is −1. The absolute value of IF is used to evaluate the effect of each
parameter. The largest value indicates the most important parameter. For i-th error
metric and j-th OF metric, IFt,i,j > IFu,i,j means that the parameter Pt is more
important than Pu. Thus, for each error metric, Li, and for each objective function
metric, Mj , we can rank parameters based on their effect on the estimated location.
This ranking is denoted by Ri,j .

More precise results can be obtained by using the foldover design matrix [18]. In
the foldover design matrix, all rows of the single design are repeated after its last
row but 0s and 1s are exchanged in the repeated rows.

5. Combining Different Ranks

In this section, we explain how to combine the rankings of the parameters under
study to obtain a global order for them. Using the ranking method in the previous
section, we would have different rankings for various error metrics and OF metrics.
Since there are three error metrics and four objective function metrics, there would
be twelve different ranking lists for the importance of parameters; each parameter
may have a different rank in each ranking list.

Each rank is obtained based on a specific property of the optimization problem.
As it is explained in Section 3, for each error and objective function metric, the
parameters are ranked based on the importance factor obtained from PB-design.
IFs with large discrepancies lead to a stronger ranking compared to IFs with small
discrepancies. Simply summing up the rankings would not necessarily determine
which of the importance factors were better differentiating among the parameters.

For each ranking, Ri,j , and for each pair of parameters, Ps, Pt, we find the
probability that Ps is more important than Pt. Based on the probabilities, we
construct the global ranking.

Consider a specific error metric, Li, and a specific objective function metric,
Mj . Assume that the importance factor of the parameter Pt, IFt,i,j , is normally
distributed N (λt,i,j , σ2). The observed value of IFt,i,j in a specific experiment is
denoted by ift,i,j . We normalize the importance factors to have a maximum value
W . The mean of IFs are assumed to be uniformly distributed in [0,W ].

For each two parameters, Ps and Pt, given the BP-design experiment impor-
tance values ifs,i,j , and ift,i,j , we find the probability: Pr(λs,i,j ≥ λt,i,j |IFs,i,j =
ifs,i,j , IFt,i,j = ift,i,j). The conditional probability can be written in the Bayesian
format as

βs,t,i,j = Pr(λs,i,j ≥ λt,i,j |IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j) =
Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j |λs,i,j ≥ λt,i,j)Pr(λs,i,j ≥ λt,i,j)

Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j)
.(9)
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Parameter NS BS ε2
S

MAX
ε2m

PER
ε2
0

DS MINLS MAXLS lS MINDS

Normal 55 12 10 (m2) 200 (m2) 50 10 5 (m) 40 (m) 20 (m) 4
Value
Extreme 80 3 50 (m2) 500 (m2) 20 6 10 (m) 60 (m) 30 (m) 3
Value

Table 1
Normal and extreme values for the parameters.

Since there is no prior information about the distributions of λs,i,j and λt,i,j , we
assume that Pr(λs,i,j ≥ λt,i,j) = 1

2 . Furthermore,

Pr(IFs,i,j = ifs,i,j , IFt,i,j = vt,i,j |λs,i,j ≥ λt,i,j) =
∫ W

x=0

∫ W

y=x

Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j |λs,i,j = y, λt,i,j = x)
dy

W

dx

W
=

1
W 2

∫ W

x=0

∫ W

y=x

1√
2πσ2

e
(y−ifs,i,j)2

2σ2
1√

2πσ2
e

(x−ift,i,j)2

2σ2 dy dx.(10)

Similarly, one can find

Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j)
= Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j |λs,i,j ≥ λt,i,j)Pr(λs,i,j ≥ λt,i,j)
+ Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j |λs,i,j < λt,i,j)Pr(λs,i,j < λt,i,j).

Now, for each parameter, Pt, we define the global importance factor, ift,

(11) ift =
Nem∑

i=1

Nom∑

j=1

Np∑

s=1,s6=t
βs,t,i,j .

Parameters with a larger ift have a higher probability of being important com-
pared to the other parameters. We sort the parameters based on their corresponding
ift values.

6. Evaluation Results

We have applied the developed method to real distance measurement data for lo-
cation estimation problem. Parameters that were described in Section 2 are ranked
using our methodology. We illustrate how the various ranking lists differ. Then, we
combine the rankings to obtain a global ranking.

The distance measurements data from the CENS lab [4] is used to evaluate the
effect of each parameter. This database is based on the real distance measurements
for SH4 nodes [8]. 91 nodes are located in fixed locations. Distance measurement
is done multiple times and in different days. The distance measurements are based
on the time of flight (ToF)[17] of the signals. In this method, the time of flight
of an acoustic signal is used to determine the distance between two nodes. It was
previously shown that the noise in the measurements is strongly non-static [7].
Therefore, parametric methods based on optimizing the results according to a fixed
noise distribution do not yield good location estimations.
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Parameter DOF NLM SMAS DNGLM
L1 L2 ML L1 L2 ML L1 L2 ML L1 L2 ML

NS 4 4 2 6 5 6 2 2 2 3 2 1
BS 2 1 1 4 2 3 4 9 4 1 4 3

ε2
S

1 2 3 2 3 4 3 3 3 5 9 6
MAX

ε2m
6 8 7 9 10 10 6 4 5 7 7 8

PER
ε2
0

7 9 10 10 8 5 7 8 7 9 10 9

DS 3 3 4 1 1 1 1 1 1 2 1 2
MINLS 8 6 8 7 6 9 8 5 10 4 3 10
MAXLS 10 10 9 5 9 8 10 10 8 10 5 4
lS 9 5 5 8 7 7 9 7 9 6 6 5
MINDS 5 7 6 3 4 2 5 6 6 8 8 7

Table 2
Importance of different parameters for different objective functions and metrics.

We have used Integer Linear Programming (ILP) to sample the database for
drawing instances with specific properties. In each experiment, the PB-design ma-
trix implies a specific value for each parameter. Extreme and normal values for
parameters are shown in Table 1. The values are determined based on the real
measurements’ error. In all experiments, ε20 is equal to 20(m2).

The following abbreviations are used in this section.

• ML : Maximum Likelihood
• DOF : Drifting of the Objective Function (M1)
• NLM : Nearest Local Minimum (M2)
• SMAS : Slope Measurement Around the Solution (M3)
• DNGLM: Depth of Non-Global Local Minimum (M4)

Table 2 shows the result of PB-based evaluations. Each parameter is ranked based
on the specific error metric and the specific OF metric. It can be seen that a specific
parameter has different rankings under various error metrics and OF metrics. For
example, the total number of nodes, NS , is ranked 1, 2, 3, 4, 5, and 6 in different
cases. Thus, a specific parameter does not have the same importance under various
metrics. It can be seen that the number of nodes, NS , and the number of beacons,
BS , are the two important parameters in most evaluations; PERε20 and MAXLS
have overall low rankings.

MAXL
S

B
S ε2

S
MAXε2

m

PERε2

0
D

S
MINL

S
l
S

Fig 2. Importance of different parameters for different objective functions and metrics.
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Parameter NS BS ε2
S

MAX
ε2m

PER
ε2
0

DS MINLS MAXLS lS MINDS

NS 0 0.071 0.417 0.725 0.716 0.403 0.708 0.691 0.598 0.748
BS 0.929 0 0.899 0.993 0.984 0.884 0.977 0.981 0.939 0.984

ε2
S

0.583 0.101 0 0.787 0.786 0.476 0.756 0.754 0.660 0.798
MAX

ε2m
0.275 0.007 0.213 0 0.490 0.193 0.464 0.477 0.354 0.515

PER
ε2
0

0.284 0.016 0.214 0.510 0 0.202 0.469 0.499 0.357 0.528

DS 0.597 0.116 0.524 0.807 0.798 0 0.785 0.795 0.678 0.821
MINLS 0.292 0.023 0.244 0.536 0.531 0.215 0 0.519 0.392 0.545
MAXLS 0.309 0.019 0.246 0.523 0.501 0.205 0.481 0 0.371 0.537
lS 0.402 0.061 0.340 0.646 0.643 0.322 0.608 0.629 0 0.671
MINDS 0.252 0.016 0.202 0.485 0.472 0.179 0.455 0.463 0.329 0

Table 3
Drifting of objective function and L2 metric: Pr(λi,j,s ≥ λi,j,t|Vi,j,s = vi,j,s, Vi,j,t = vi,j,t)

where the first column is Ps and the first row is Pt.

The comparative ranks of parameter pairs tend to vary as well. Figure 2 shows
the normalized importance factor (IF) for two cases: DOF and SMAS with L2 error
metric. For DOF, the number of beacons BS is strongly more important than the
mean squared error ε2S . The mean degree of nodes, DS , is weakly more important
than the mean squared error ε2S . The same behavior can be seen in SMAS. From
our visual inspections, the number of nodes NS and the mean degree of nodes DS

are the most important while others almost have the same importance factor (IF).
The ranks of the mean squared error ε2S and maximum edge length MAXLS are 3
and 10 respectively. However, their importance factors are very close.

The discrepancy in the rank and comparative ranks confirms our postulation
that averaging the parameter ranks is not the best way for combining them. Thus,
we use the combining method that was introduced in Section 5. The probability
comparisons for the values in Figure 2 are shown in Tables 3 and 4. The tables
compare the importance of parameters. For example, for the DOF-L2, Figure 2
states that BS is strongly more important than PERε20 . Table 3 shows that the
probability that the mean ofBS is larger than the mean of PERε20 is 0.984. Similarly,
MAXε2m

and PERε20 have approximately the same importance. The probability that
the mean of MAXε2m

is larger than the mean of PERε20 is 0.49. This probability
value is close to 0.5, meaning that there is not enough information to compare the
values.

Table 4 compares the importance factors of SMAS for the L2 error metric. Table
4 confirms the result. The rows corresponding to NS , and DS have values close to
1 confirming the high importance of the two parameters. When comparing other
parameters, the probability that one parameter is greater than the other is about
0.5. It confirms our previous postulation that simple rankings are not sufficient for
concluding the global parameter ordering and the importance factors are significant
as well.

The global ranking based on the introduced combining method in Section 5 is
shown in Table 5. The table indicates that the mean degree of nodes DS is the most
important parameter. This result is consistent with Table 2 where the mean degree
of nodes DS is the most important parameter in the seven scenarios.

The global ranking results could be used to improve the goodness of location
estimations in ad-hoc networks. To deploy a network or on an already deployed
network, one could exploit the results by considering the analyzed effect of each
parameter on the estimated location’s accuracy. Based on the constraints of the
problem, the best parameters for improving the estimated locations could be deter-
mined. For example, when there are limitations for the mean degree of the graph,
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Parameter NS BS ε2
S

MAX
ε2m

PER
ε2
0

DS MINLS MAXLS lS MINDS

NS 0 0.947 0.947 0.936 0.944 0.285 0.939 0.931 0.937 0.958
BS 0.053 0 0.493 0.506 0.504 0.017 0.501 0.496 0.500 0.504

ε2
S

0.053 0.507 0 0.509 0.505 0.018 0.504 0.516 0.507 0.511
MAX

ε2m
0.064 0.494 0.491 0 0.505 0.017 0.504 0.506 0.499 0.499

PER
ε2
0

0.056 0.496 0.495 0.495 0 0.017 0.492 0.496 0.502 0.500

DS 0.715 0.983 0.982 0.983 0.983 0 0.975 0.984 0.974 0.980
MINLS 0.061 0.499 0.496 0.496 0.508 0.025 0 0.506 0.501 0.488
MAXLS 0.069 0.504 0.484 0.494 0.504 0.016 0.494 0 0.502 0.494
lS 0.063 0.500 0.493 0.501 0.498 0.026 0.499 0.498 0 0.505
MINDS 0.042 0.496 0.489 0.501 0.500 0.020 0.512 0.506 0.495 0

Table 4
SMAS and L2 metric: Pr(λi,j,s ≥ λi,j,t|Vi,j,s = vi,j,s, Vi,j,t = vi,j,t) where the first column is

Ps and the first row is Pt.

Parameter NS BS ε2
S

MAX
ε2m

PER
ε2
0

DS MINLS MAXLS lS MINDS

Rank 2 3 4 8 10 1 6 9 7 5

Table 5
Global ranks.

one can increase the number of nodes in the network to increase the accuracy of
the estimated location. Note that, changing one parameter typically only improves
the accuracy up to a certain point; further changing the parameter would not yield
an improvement in the estimation accuracy.

7. Conclusion

We introduce a systematic methodology for determining the challenge of model-
ing a pertinent adhoc network data set. The complex modeling problem is studied
as an instance of a nonlinear optimization problem that consists of an objective
function (OF) and a set of constraints. The data set is the optimization input and
the estimated model is the output. We characterize the input by a set of its char-
acteristic parameters. We define four new metrics that can be used to evaluate the
goodness of an input for being optimized by a specific OF. The introduced metrics
are: (1) drifting of the OF, (2) distance to the nearest local minimum, (3) the slope
of the OF around the solution, and (4) the depth of the non-global local minima.
We employ Plackett and Burmann simulation methodology to systematically eval-
uate the linear impact of various input parameters under each metric. Finally, we
present a method for combining the effect of parameters under different metrics to
determine the global impact of each parameter. We utilize the new methodology
for estimating the locations of the nodes in an ad-hoc network where the distance
measurement data is available. Three common forms of OF are considered: L1, L2

and L∞. Our evaluations show that the mean degree on the nodes and the number
of nodes in the network are the two most important parameters for estimating the
locations.
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A Note on the Investment Proportions of

a Minimum-Variance Equity Portfolio

Wilhelmine von Türk1,∗

American Century Investments

Abstract: It is shown that the capitalization-weighted portfolio is mathemat-
ically required to coincide with the minimum-variance portfolio, provided both
portfolios are defined with respect to the same (arbitrary) collection of equities
having linearly independent returns. This result is a logical consequence of the
law of iterated expectations and has important implications for equity return
covariance structure.
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1. Introduction

Samuelson (1965) was the first to recognize the relevance of the Law of Iterated
Expectations (LIE) in the area of finance. His celebrated paper shows how this law
can be applied in the context of the price of a single risky asset. Essentially, the
LIE reveals that forecasting error is not predictable. An illuminating discussion of
this law can be found, e.g., in Campbell, Lo and MacKinlay (1997).

This paper extends Samuelson’s insight by developing an application of the LIE
in the context of an arbitrary collection of equity returns. Specifically, it will be
shown that the LIE implies that the capitalization-weighted portfolio is mathe-
matically required to coincide with the minimum-variance portfolio, provided both
portfolios are defined with respect to the same (arbitrary) collection of equities hav-
ing linearly independent returns. This result has important implications for equity
return covariance structure, as summarized in technical appendix A.
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The paper is organized as follows. Section 2 introduces the notation and presents
a sufficient condition for proving the main result. The population view of the sur-
prises (forecasting errors) is developed in Section 3. This population view yields
an important building block for the proof of the main result. Section 4 applies the
LIE in the context of a cross-section of equities, and exhibits the implication of
this law from which the main result logically flows. The proof of the main result is
summarized in Section 5. Section 6 concludes.

Technical appendix A summarizes the implications of this paper’s main result
for equity return covariance structure.

2. Notation and Preliminary Results

Consider an arbitrary collection of n equities with linearly independent returns.
Denote their returns by R = (R1 . . . Rn)′ and denote the covariance matrix of R
by Σ. Since the returns are assumed to be linearly independent, Σ is nonsingular,
so that its inverse Σ−1 is well defined. Let 1 denote the n x 1 vector all of whose
elements are equal to 1.

Let M = (M1 . . .Mn)′ denote the market capitalizations of the equities. Let wi =
Mi/M′1 and let w = (w1 . . . wn)′. The vector w corresponds to the capitalization
weights. Note that all of the elements of w are positive. Let p = (p1 . . . pn)′ denote
an n x 1 vector of constants such that p′1 = 1. Then the elements of p correspond
to the investment proportions of a portfolio fully invested in the n equities, and
p′R denotes its return. If p = w, the investment proportions are those of the
capitalization-weighted portfolio. The expression w′R denotes the return of the
capitalization-weighted portfolio.

Among all possible fully invested portfolios that can be formed from this col-
lection of equities, there is one portfolio whose return has minimum variance. This
portfolio is the minimum-variance portfolio. It is well known that, if Σ is non-
singular, the investment proportions of the minimum-variance portfolio are given
by Σ−11/1′Σ−11 (see, e.g., Roll (1977), Campbell, Lo and MacKinlay (1997) or
Grinold and Kahn (2000)).

The desired result is that

w = Σ−11/1′Σ−11.

For the purpose of finding a proof of this result, it is convenient to define

βi = Cov(Ri,w′R)/Var(w′R).

Let β = (β1 . . . βn)′. Then
β = Σw/w′Σw.

Note that w′1 = 1, so that
w′Σw = 1/β′Σ−11

and
w = Σ−1β/β′Σ−11.

With this notation it is possible to establish the following preliminary result.

Lemma 2.1. The following assertions are equivalent :
(i) w = Σ−11/1′Σ−11
(ii) β = 1
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Proof. w = Σ−1β/β′Σ−11 implies that Σw = β/β′Σ−11, and w = Σ−11/1′Σ−11
implies that Σw = 1/1′Σ−11. Therefore, w = Σ−11/1′Σ−11 if and only if β = c1
for c = β′Σ−11/1′Σ−11. Since w′β = w′1 = 1, this constant c is equal to 1.

Next, consider an investment period which begins at time t = 0 and ends at time
t = T . Note that at time t = 0, w is a vector of known constants while R is a vector
of random variables. Let E[R] denote the n x 1 vector whose elements correspond
to E[Ri], where E[Ri] is the expected value of Ri at time t = 0 (i = 1, . . . , n). The
expression E[Ri] corresponds to the best forecast at time t = 0 of the realized value
of Ri observed at time t = T .

Now shift attention from the returns Ri to the surprises Si, where Si = Ri −
E[Ri]. The surprises correspond to forecasting errors. Let S = (S1, . . . , Sn)′, let A
denote the σ-field induced by S, and let F denote the σ-field induced by w′S. Since
w′S is a function of S, F ⊂ A. The conditional expectation of Si given w′S can
then be written as EF [Si], which is defined almost surely (a.s.) in the sense that
any two versions agree, except possibly on a null set in A. With this notation, it is
possible to simplify the task of proving the desired result as follows.

Lemma 2.2. For the purpose of showing that w = Σ−11/1′Σ−11, it is sufficient
to show that EF [Si] = w′S (a.s.) (i = 1, . . . , n).

Proof. In light of Lemma 2.1, it is sufficient to show that EF [Si] = w′S (a.s.)
(i = 1, . . . , n) implies that β = 1.

By definition,
Cov(Ri,w′R) = E[Siw′S]

and
Var(w′R) = E

[
(w′S)2

]
.

Therefore it suffices to show that EF [Si] = w′S (a.s.) (i = 1, . . . , n) implies that

E[Siw′S] = E
[
(w′S)2

]
(i = 1, . . . , n).

This is easily accomplished by recalling the usual properties of conditional expec-
tation operators, which yields

E[Siw′S] = E
[
w′SEF [Si]

]
,

so that EF [Si] = w′S (a.s.) implies E[Siw′S] = E
[
(w′S)2

]
(i = 1, . . . , n).

Before it can be shown that the assertion EF [Si] = w′S (a.s.) (i = 1, . . . , n)
flows logically from the LIE, it is first necessary to develop the population view of
the surprises (forecasting errors). This is done in the next section.

3. The Population View

Consider an arbitrary collection of n publicly traded companies and an investment
period which begins at time t = 0 and ends at time t = T . The development
of the population view of the surprises depends on the operation of repricing the
shares of each company at the beginning of the investment period, while adjusting
the shares outstanding so as to leave the market capitalization of each company
unchanged. This operation, very familiar to equity investors, guarantees that there
is no loss of generality in repricing the shares of each company at the beginning of
the investment period to have a value of one dollar.
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As in Section 2, let Mi denote the market capitalizations at the beginning of the
investment period (i = 1, . . . , n). If the price of one share is one dollar (and if the
market capitalizations are rounded to the nearest dollar), then Mi corresponds to
the number Ni of shares outstanding for the i-th company. Each share of the i-th
company has return Ri and associated surprise (forecasting error) Si. Therefore, at
the end of the investment period, the observed values si of the random variables Si

form a population in which si occurs with frequency Ni. The capitalization weights
wi then correspond to the relative frequencies with which the si are observed. This
population has mean w′s, where s = (s1, . . . , sn)′ is the observed value of the
random vector S = (S1, . . . , Sn)′.

It is well known that the population mean is the expected value of a randomly
selected element from that population. From the standpoint of time t = T , the
population mean is observed with certainty, while from the standpoint of time
t = 0, the population mean corresponds to the random variable w′S. This means
that

ET [a randomly selected surprise] = w′s,

where “ET ” is to be read as “the expected value at time t = T , conditional on
the observed value w′s of w′S.” Translating this into σ-field notation yields the
following lemma.

Lemma 3.1. EF [a randomly selected surprise]= w′S (a.s.), where F denotes the
σ-field induced by w′S.

As will be seen in Section 5, Lemma 3.1 is an important building block for the
proof of the main result.

4. The Law of Iterated Expectations

A key insight provided by the LIE is that forecasting error is not predictable. The
present paper contemplates an arbitrary collection of n equities with returns Ri

and associated forecasting errors Si = Ri−E[Ri] (i = 1, . . . , n). In this context, the
LIE implies that the expected value of any surprise Si corresponds to the expected
value of a randomly selected surprise. From the standpoint of time t = 0, this yields
the set of equations

E[Si] = E[a randomly selected surprise] (i = 1, . . . , n).

Conditional on w′S, the LIE similarly implies the following lemma.

Lemma 4.1. EF [Si]=EF [a randomly selected surprise] (a.s.) (i = 1, . . . , n), where
F denotes the σ-field induced by w′S.

Lemma 4.1 exhibits the implication of the LIE from which the main result of the
present paper logically flows, as summarized in the next section.

5. Proof of the Main Result

The main result is stated as the proposition below.

PROPOSITION: For an arbitrary collection of n equities having linearly inde-
pendent returns, w = Σ−11/1′Σ−11.
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Proof. From Lemma 4.1,

EF [Si] = EF [a randomly selected surprise] (a.s.) (i = 1, . . . , n).

From Lemma 3.1,

EF [a randomly selected surprise] = w′S (a.s.).

Combining Lemmas 4.1 and 3.1 yields

EF [Si] = w′S (a.s.) (i = 1, . . . , n).

In light of Lemma 2.2, this completes the proof.

6. Conclusion

It has been shown that the capitalization-weighted portfolio is mathematically re-
quired to coincide with the minimum-variance portfolio, provided both portfolios
are defined with respect to the same (arbitrary) collection of equities having lin-
early independent returns. This result is a logical consequence of the LIE, and has
important implications for equity return covariance structure, as summarized in
technical appendix A.

Technical Appendix A

The main result of this paper has important implications for equity return covari-
ance structure, as summarized in the following proposition.

proposition: For any collection of n equities with linearly independent returns,
the covariance matrix Σ of R = (R1, . . . , Rn)′ is of the form

Σ = 11′k + U2

where U2 is a diagonal matrix such that the i-th diagonal element is positive and
inversely proportional to Mi (i = 1, . . . , n), and where k corresponds to a constant
which can be positive, negative or zero.

Note that for positive values of k, general equity return covariance structure
exhibited in the proposition above corresponds to the covariance matrix of a 1-
factor model in which

(i) the factor loadings of the unique common factor are all equal to one; and
(ii) the variances of the specific factors are inversely proportional to the market

capitalizations of the equities.
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